317
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Regulation of osteoclast differentiation by static magnetic fields

, , , , &
Pages 8-19 | Received 24 Jun 2015, Accepted 04 Jan 2016, Published online: 29 Jun 2016

References

  • Asagiri, M., Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40:251–264.
  • Boyle, W. J., Simonet, W. S., Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature 423:337–342.
  • Chekhun, V. F., Demash, D. V., Naleskina, L. A. (2013). Evaluation of biological effects and possible mechanisms of static magnetic field action. Int. J. Physiol. Pathophysiol. Pharmacol. 4:69–81.
  • Chionna, A., Tenuzzo, B., Panzarini, E., et al. (2005). Time dependent modifications of Hep G2 cells during exposure to static magnetic fields. Bioelectromagnetics 26:275–286.
  • Colbert, A. P., Wahbeh, H., Harling, N., et al. (2009). Static magnetic field therapy: A critical review of treatment parameters. Evid. Based Complement Alternat. Med. 6:133–139.
  • Destaing, O., Saltel, F., Geminard, J. C., et al. (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol. Biol. Cell 14:407–416.
  • Di, S., Tian, Z., Qian, A., et al. (2012). Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88:806–813.
  • Dini, L., Abbro, L. (2005). Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36:195–217.
  • Feng, X. (2008). RANKing intracellular signaling in osteoclasts. IUBMB Life 57:389–395.
  • Feng, X., McMonald, J. M. (2011). Disorders of bone remodeling. Annu. Rev. Pathol. 6:121e145.
  • International Commission on Non-Ionizing Radiation Protection. (2009). Guidelines on limits of exposure to static magnetic fields. Health Phys. 96:504–514.
  • Jia, B., Xie, L., Zheng, Q., et al. (2014). A hypomagnetic field aggravates bone loss induced by hindlimb unloading in rat femurs. PLoS One 9:e105604.
  • Junji, M. (2006). The review of cellular effects of a static magnetic field. Sci. Technol. Adv. Mater. 7:305.
  • Lin, S. L., Chang, W. J., Chiu, K. H., et al. (2008). Mechanobiology of MG63 osteoblast-like cells adaptation to static magnetic forces. Electromagn. Biol. Med. 27:55–64.
  • Markov, M. (2007). Therapeutic application of static magnetic fields. Environmentalist 27:457–463.
  • McHugh, K. P., Hodivala-Dilke, K., Zheng, M. H., et al. (2000). Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105:433–440.
  • Mo, W., Liu, Y., He, R. (2014). Hypomagnetic field, an ignorable environmental factor in space? Sci. China Life Sci. 57:726–728.
  • Mo, W., Zhang, Z., Liu, Y., et al. (2013). Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression. PLoS One 8:e54775.
  • Nilforoushan, D., Gramoun, A., Glogauer, M., et al. (2009). Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide 21:27–36.
  • Puricelli, E., Dutra, N. B., Ponzoni, D. (2009). Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats. Head Face Med. 5:1.
  • Puricelli, E., Ulbrich, L. M., Ponzoni, D., et al. (2006). Histological analysis of the effects of a static magnetic field on bone healing process in rat femurs. Head Face Med. 2:43.
  • Qian, A., Wang, L., Gao, X., et al. (2012). Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes. IEEE Trans. Biomed. Eng. 59:68–77.
  • Qian, A., Yang, P., Hu, L., et al. (2010). High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton-associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46:678–700.
  • Qian, A., Yin, D., Yang, P., et al. (2013). Application of diamagnetic levitation technology in biological sciences research. IEEE Trans. Appl. Supercond. 23:3600305–3600305.
  • Qian, A., Yin, D., Yang, P., et al. (2009). Development of a ground-based simulated experimental platform for gravitational biology. IEEE Trans. Appl. Supercond. 19:42–46.
  • Rosen, A. (2003). Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–173.
  • Shang, P., Zhang, J., Qian, A., et al. (2013). Bone cells under microgravity. J. Mech. Med. Biol. 13:1340006.
  • Shanmugarajan, T. S., Im, G. I. (2011). Osteogenic differentiation of mesenchymal stem cells and bone tissue engineering. Tissue Eng. Regen. Med. 8:347–352.
  • Stenbeck, G. (2002). Formation and function of the ruffled border in osteoclasts. Semin. Cell Dev. Biol. 13:285–292.
  • Sun, Y., Chen, Z., Chen, X., et al. (2015). Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans Biomed. Eng. 62:900–908.
  • Taniguchi, N., Kanai, S., Kawamoto, M., et al. (2004). Study on application of static magnetic field for adjuvant arthritis rats. Evid. Based Complement Alternat. Med. 1:187–191.
  • Wang, Z., Hao, F., Ding. C., et al. (2014). Effects of static magnetic field on cell biomechanical property and membrane ultrastructure. Bioelectromagnetics 35:251–261.
  • Wang, Z., Yang, P., Xu, H., et al. (2009). Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics 30:446–453.
  • World Health Organization. (2006). Environmental Health Criteria 232, Static Fields. Geneva: World Health Organization.
  • Xu, S., Okano, H., Tomita, N., et al. (2011). Recovery effects of a 180 mT static magnetic field on bone mineral density of osteoporotic lumbar vertebrae in ovariectomized rats. Evid. Based Complement Alternat. Med. 2011:620984.
  • Xu, S., Tomita, N., Ohata, R., et al. (2001). Static magnetic field effects on bone formation of rats with an ischemic bone model. Biomed. Mater. Eng. 11:257–263.
  • Yan, Q. C., Tomita, N., Ikada, Y. (1998). Effects of static magnetic field on bone formation of rat femurs. Med. Eng. Phys. 20:397–402.
  • Zhang, J., Ding, C., Ren, L., et al. (2014a). The effects of static magnetic fields on bone. Prog. Biophys. Mol. Biol. 114:146–152.
  • Zhang, J., Ding, C., Shang, P. (2014b). Alterations of mineral elements in osteoblast during differentiation under hypo, moderate and high static magnetic fields. Biol. Trace Elem. Res. 162:153–157.
  • Zheng, H., Yu, X., Collin-Osdoby, P., et al. (2006). RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J. Biol. Chem. 281:15809–15820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.