139
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of extremely low frequency electromagnetic field on brain histopathology of Caspian Sea Cyprinus carpio

&
Pages 31-38 | Received 24 Sep 2015, Accepted 16 Jan 2016, Published online: 30 Jun 2016

References

  • Abraham, O., la Fuente, R.G., Juan, M., et al. (2012). Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: an in vivo study. www.cellbiolintrep.org & volume 19 (1) art: e00014.
  • Akdag, M.Z., Bilgin, M.H., Dasdag S., et al. (2007). Alteration of nitric oxide production in rats exposed to a prolonged, extremely low-frequency magnetic field. Electromagn. Biol. Med. 26:99–106.
  • Akdag, M.Z., Dasdag, S., Ulukaya, E., et al. (2010). Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain. Biol. Trace Elem. Res. 138:238–249.
  • Aldinucci, C., Carretta, A., Maiorca, S.M., et al. (2009). Effects of 50 Hz electromagnetic fields on rat cortical synaptosomes. Toxicol. Health. 25:249–252.
  • Arancibia, S.R., Hernandez-Zimbron, L.F., Martinez, E.R., et al. (2013). Chronic exposure to low doses of ozone produces a state of oxidative stress and blood–brain barrier damage in the hippocampus of rat. Adv. Biosci. Biotechnol. 4:24–29.
  • Balassa, T., Varró, P., Elek, S., et al. (2013). Changes in synaptic efficacy in rat brain slices following extremely low-frequency magnetic field exposure at embryonic and early postnatal age. Int. J. Dev. Neurosci. 31(8):724–730.
  • Ballabh, P., Braun, A., Nedergaard, M. (2004). The blood–brain barrier: an overview Structure, regulation, and clinical implications. Neurobiol. Dis. 16:1–13.
  • Blank, M. (2012). The Cellular Stress Response: EMF-DNA Interaction. Prepared for the BioInitiative Working Group. September 2012. Section7.
  • Borges, T.J., Wieten, L., van Herwijnen, M.J., et al. (2012). The anti- inflammatory mechanisms of Hsp70. Front. Immunol. 3:95.
  • Caplan, L.S., Schoenfeld, E.R., O’Leary E.S., et al. (2000). Breast cancer and electromagnetic fields- a Review. Ann. Epidemiol. 10:31–44.
  • Ceccehelli, R., Dehouck, B., Descamps, L., et al. (1999). In vitro model for evaluating drug transport across the blood–brain barrier. Adv. Drug Delivery Rev. 36:165–178.
  • Chu, L.Y., Lee, J.H., Nam, Y.S., et al. (2011). Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum. Gen. Physiol. Biophys. 30:415–421.
  • Ciejka, E., Kleniewska, P., Skibska, B., et al. (2011). Effects of extremely low frequency magnetic field on oxidative balance in brain of rats. J. Physiol. Pharmacol. 62:657–661.
  • Consales, C., Merla, C., Marino, C., et al. (2012). Electromagnetic fields, oxidative stress, and neurodegeneration. Int. J. Cell Biol. 2012, Article ID 683897:16.
  • Coşkun, S., Balabanli, B., Canseven, A., et al. (2009). Effects of Continuous and Intermittent Magnetic Fields on Oxidative Parameters In vivo. Neurochem. Res. 34(2):238–243.
  • Cramer, S.P., Simonsen, H., Frederiksen, J.L., et al. (2014). Abnormal blood–brain barrier permeability in normal appearing white matter in multiple sclerosis investigated by MRI. Neurochem. Res. 4:182–189.
  • Cvetkovic, D. Cosic, I. (2009). Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures. Med. Biol. Eng. Comput. 47(10):1063–1073.
  • Davson, H., Segal, M.B. (1996). Physiology of the CSF and blood–brain barriers. p.192. Hardcover: 832 pages.1st Edition. Publisher: CRC Press; 1st edition (January 15, 1996). ISBN-10: 0849344727, ISBN-13: 978-0849344725.
  • Delgado, J.M., Leal, J., Monteagudo, J.L., et al. (1982). Embryological changes induced by weak, extremely low frequency electromagnetic fields. J. Anat. 134:533–551.
  • Di Carlo, A., White, N., Guo, F., et al. (2002). Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. J. Cell Biochem. 84:447–454.
  • Enciu, A.M., Gherghiceanu, M., Popescu, B.O. (2013). Triggers and effectors of oxidative stress at blood–brain barrier level: relevance for brain ageing and neurodegeneration. Hindawi Publishing Oxid. Med. Cell. Longevity 2013, Article ID 297512:12.
  • Fournier, N.M., Mach, Q.H., Whissell, P.D., et al. (2012). Neurodevelopmental anomalies of the hippocampus in rats exposed to weak intensity complex magnetic fields throughout gestation. Int. J. Dev. Neurosci. 30:427–433.
  • Freyhof, J., Kottelat, M. (2011). “Cyprinus carpio”. IUCN Red List of Threatened Species. Version 2011.1. International Union for Conservation of Nature. Retrieved June 23. p. 23–25.
  • Gölfert, F., Hofer, A., Thümmler, M., et al. (2001). Extremely low frequency electromagnetic fields and heat shock can increase microvesicle motility in astrocytes. Bioelectromagnetics. 22:71–78.
  • Gulturk, S., Demirkazik, A., Kosar, I., et al. (2010). Effect of exposure to 50 Hz magnetic field with or without insulin on BBB permeability in STZ-induced diabetic rats. Bioelectromagnetics. 31:262–269.
  • Gurcu, B., Yildiz, S., Koca, Y.B., et al. (2010). Investigation of histopathological and cytogenetic effects of heavy metals pollution on Cyprinus carpio (Linneaus,1758) in the GÖlmarmara Lake, Turkey. J. Anim. Vet. Adv. 9:798–808.
  • He, Y.L., Liu, D.D., Fang, Y.J., et al. (2013). Exposure to extremely low-frequency electromagnetic fields modulates Na+ currents in rat cerebellar granule cells through increase of AA/PGE2 and EP receptor-mediated cAMP/PKA pathway. PLoS One. 8:e54376.
  • ICNIRP (International Commission on Non Ionizing Radiation Protection) (1998). Guidelines for limiting exposure to time- varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522.
  • Ito, J.I., Gong, J., Michikawa, M. (2013). Oxidative Stress and FGF-1 Release from Astrocytes. J. Alzheimers Dis. Parkinsonism. 3:5.
  • Janać, B., Tovilović, G., Tomić, M., et al. (2009). Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain. Gen. Physiol. Biophys. 28 Spec No: 41–46.
  • Jelenković, A., Janać, B., Pesić, V., et al. (2006). Effects of extremely low-frequency magnetic field in the brain of rats. Brain. Res. Bull. 68:355–360.
  • Kabuto, H., Yokoi, I., Ogawa, N., et al. (2001). Effect of magnetic fields on the accumulation of thiobarbituric acid reactive substance induced by iron salt and H2O2 in mouse brain homogenates or phosphotidylcholine. Pathophysiology 7:283–288.
  • Khater, Z.Z.K., Ibraheim, M.H. (2015) Ecological studies on the effect of magnetic field on water. Int. J. Curr. Res. Aca. Rev. 3:262–279.
  • Kong, Q., Lin, C.L.G. (2010). Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell. Molecular Life Sci. 67:1817–1829.
  • Kovacic, P., Somanathan, R. (2010). Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J. Recept. Signal Transduct Res. 30:214–226.
  • Kultz, D. (2005). Molecular and evolutionary basis of the cellular stress response. Ann. Rev. Physiol. 67:225–257.
  • Lai, H., Singh, N.P. (2004). Magnetic-Field–Induced DNA Strand Breaks in Brain Cells of the Rat. Environ. Health Perspect. 112(6): 687–694.
  • Liu, Y., Hong, R., Yu, Y.M., et al. (2003). Effects of extremely low frequency electromagnetic fields on apoptosis and cell cycle of mouse brain and liver cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing ZaZhi. 21:339–341.
  • Lochhead, J.J., McCaffrey, G., Quigley, C.E., Finch, J.D., Demarco, K.M., Nametz, N. (2011). Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia–reoxygenation. J. Cereb. Blood Flow Metab: Off. J. Int. Soc. Cereb. Blood Flow Metab. 31:790–791.
  • Lull, M.E., Block, M.L. (2010). Microglial Activation & Chronic Neurodegeneration. Neurother. 7:354–365.
  • Maragakis, N.J., Rothstein, J.D. (2006). Mechanisms of Disease: Astrocytes in Neurodegenerative Disease. Nat. Clin. Pract. Neurol. 2:679–689.
  • Mayhan, W.G. (2001). Regulation of blood–brain barrier permeability. Microcirc. 8:89–104.
  • Nittby, H., Grafstro, M.G., Eberhardt, J.L., et al. (2008). Radiofrequency and extremely low-frequency electromagnetic field effects on the blood–brain barrier. Electromagn. Biol. Med. 27:103–126.
  • Özmen, I., Naziroglu, M., Alici, H.A., et al. (2007). Spinal morphine administration reduces the fatty acid contents in spinal cord and brain by increasing oxidative stress. Neurochem. Res. 32:19–25.
  • Patel, J.P., Frey, B.N. (2015). Disruption in the blood–brain barrier: the missing link between brain and body inflammation in bipolar disorder? Hindawi Publishing Corporation Neural Plast. 2015, Article ID 708306:12.
  • Poltronieri, C., Negrato, E., Bertotto, D., et al. (2008). Immunohistochemical localization of constitutive and inducible Heat Shock Protein 70 in carp (Cyprinus carpio) and trout (Oncorhynchusmykiss) exposed to transport stress. Eur. J. Histochem. 52:191–198.
  • Potokar, M., Vardjan, N., Stenovec, M., et al. (2013). Astrocytic Vesicle Mobility in Health and Disease. Int. J. Mol. Sci. 14:11238–11258.
  • Rageh, M.M., El-Gebaly, R.H., El-Bialy, N.S. (2012). Assessment of genotoxic and cytotoxic hazards in brain and bone marrow cells of newborn rats exposed to extremely low-frequency magnetic field. J. Biomed Biotechnol. 2012, Article ID 716023:7.
  • Racuciu, M., Creanga, D.E., Miclaus, S. (2006). The absorption of electromagnetic energy in the mammal tissues. AnaleleStiintifice Ale Universitatii. “Al. I. Cuza” Iasi. Tomul II, s. Biofizică, FizicămedicalăşiFizicamediului, p. 9–14.
  • Ravera, S., Bianco, B., Cugnoli, C., et al. (2010). Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics. 31:270–276.
  • Rubbin, L.L., Hall, D.E., Porter, S., et al. (1991). A cell culture model of the blood–brain barrier. J. Cell Biol. 115:1725–1735.
  • Rubik, B. (1997). Bioelectromagnetics & the Future of Medicine. Administrative Radiol. J, 16:38–46.
  • Salford, L.G., Brun, A.E., Eberhardt, J.L., et al. (2003).Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ. Health Perspect. 111:881–883.
  • Salford, L.G., Nittby, H., Brun, A., et al. (2008). The mammalian brain in the electromagnetic fields designed by man-with special reference to blood–brain barrier function, neuronal damage and possible physical mechanisms. Progress of Theoretical Physics Supplement No.173.
  • Shevtsov, M.A., Nikolaev, B.P., Yakovlev, L.Y., et al. (2014). Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats. Drug Des. Devel. Ther. 8:639–650.
  • Shams, L.M., Bigdeli, M.R, Kalantary, S. (2011). Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn chicken embryos. Electromagn. Biol. Med. 30:146–157.
  • Shin, E.J., Jeong, J.H., Kim, H.J., et al. (2007). Exposure to extremely low frequency magnetic fields enhances locomotor activity via activation of dopamine D1-like receptors in mice. J. Pharmacol. Sci. 105:367–371.
  • Singh, N.P., Lai, H. (1998). 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat. Res. 400:313–320.
  • Strasák, L., Bártová, E., Krejci, J., et al. (2009). Effects of ELF-EMF on brain proteins in mice. Electromagn. Biol. Med. 28(1):96–104.
  • Takeda, S., Sato, N., Morishita, R. (2014). Systemic inflammation, blood–brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6, article 171: 1–8.
  • Thun-Battersby, M., Mevissen, A., Oscher, W.L. (1999). Exposure of Sprague-Dawley rats to a 50-hertz, 100-μTesla magnetic field for 27 weeks facilitates mammary tumorogenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res. 59:3627–3633.
  • Tirapelli, D.P., Carlotti Jr, C.G., Leite, J.P., et al. (2010). Expression of HSP70 in cerebral ischemia and neuroprotective action of hypothermia and ketoprofen. Arq Neuropsiquiatr. 68:592–596.
  • Ushiyama, A., Ohkubo, C. (2004). Acute Effects of Low-frequency Electromagnetic Fields on Leukocyte-endothelial Interactions In Vivo. In vivo 18:125–132.
  • Valko, M., Leibfritz, D., Moncol, J., et al. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int. J Biochem. Cell Biol. 39:44–84.
  • Vallée, P., Lafait, J. (2005). Effects of pulsed low frequency electromagnetic fields on water using photoluminescence spectroscopy: role of bubble/water interface. J Chem. Phy., in press.
  • Varró, P., Szemerszky, R., Bárdos, G., Világi, I. (2009). Changes in synaptic efficacy and seizure susceptibility in rat brain slices following extremely low-frequency electromagnetic field exposure. Bioelectromagnetics. 30:631–640.
  • Wang, J., Wei, Y., Li, X., et al. (2007). The identification of heat shock protein genes in goldfish (Carassiusauratus) and their expression in a complex environment in Gaobeidian Lake, Beijing, China. Comp. Biochem. Physiol. C 145:350–362.
  • Woodruff, D.L., Schultz, I.R., Marshall, K.E., et al. (2012). Effects of Electromagnetic Fields on Fish and Invertebrates. Task 2.1.3: Effects on Aquatic Organisms -Fiscal Year 2011 Progress Report. PNNL-20813. Richland, Washington: Pacific Northwest National Laboratory.
  • Yamashita, M., Yabu, T., Ojima, N. (2010). Stress Protein HSP70 in Fish. Aqua-Biosci. Monogr. 3:111–141.
  • Yuan, H., Waleed Gaber, M., McColgan, T., et al. (2003). Radiation-induced Permeability and Leukocyte adhesion in the rat blood–brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res. 969:59–69.
  • Zhang, M.1., Mao, Y., Ramirez, S.H., et al. (2010). Angiotensin II induced cerebral micro vascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neurosci. 171:852–858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.