303
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway

, , , &
Pages 45-54 | Received 17 Nov 2015, Accepted 31 Jan 2016, Published online: 01 Jul 2016

References

  • Barberini, D. J., Freitas, N. P. P., Magnoni, M. S., et al. (2014). Equine mesenchymal stem cells from bone marrow, adipose tissue and umbilical cord: Immunophenotypic characterization and differentiation potential. Stem Cell Res. Therapy 5:25.
  • Biancone, L., Bruno, S., Deregibus, M. C., et al. (2012). Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dialysis Transplant. 27:3037–3042.
  • Butler, D. L., Goldstein, S. A., Guldberg, R. E., et al. (2009). The impact of biomechanics in tissue engineering and regenerative medicine. Tissue Eng. Part B, Rev. 15:477–484.
  • Campisi, J., d’Adda di Fagagna, F. (2007). Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8:729–740.
  • Chen, J., Crawford, R., Chen, C., et al. (2013). The key regulatory roles of the PI3K/Akt signaling pathway in the functionalities of mesenchymal stem cells and applications in tissue regeneration. Tissue Eng. Part B, Rev. 19:516–528.
  • Cheng, H., Xu, X., Zhang, R., et al. (2008). [Effects of constant magnetic fields on proliferation and migration of endothelial progenitor cells under rapamycin intervention: Experiment with rats]. Zhonghua Yi Xue Za Zhi 88:2719–2721.
  • Chionna, A., Dwikat, M., Panzarini, E., et al. (2003). Cell shape and plasma membrane alterations after static magnetic fields exposure. EJH 47:299–308.
  • Chomczynski, P., Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Dehghanifard, A., Shahjahani, M., Soleimani, M., et al. (2013). The emerging role of mesenchymal stem cells in tissue engineering. Int. J. Hematol.-Oncol. Stem Cell Res. 7:46–47.
  • De Miguel, M. P., Fuentes-Julián, S., Blázquez-Martínez, A., et al. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Curr. Mol. Med. 12:574–591.
  • Discher, D. E., Mooney, D. J., Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science (New York, N.Y.) 324:1673–1677.
  • Docheva, D., Popov, C., Mutschler, W., et al. (2007). Human mesenchymal stem cells in contact with their environment: Surface characteristics and the integrin system. J. Cell. Mol. Med. 11:21–38.
  • Dubey, A. K., Gupta, S. D., Basu, B. (2011). Optimization of electrical stimulation parameters for enhanced cell proliferation on biomaterial surfaces. J. Biomed. Mater. Res. Part B, Appl. Biomater. 98:18–29.
  • Gioia, L., Saponaro, I., Bernabò, N., et al. (2013). Chronic exposure to a 2 mT static magnetic field affects the morphology, the metabolism and the function of in vitro cultured swine granulosa cells. Electromagn. Biol. Med. 32:536–550.
  • Jackson, K. A., Majka, S. M., Wang, H., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107:1395–1402.
  • Kim, E.-C., Leesungbok, R., Lee, S.-W., et al. (2015). Effects of moderate intensity static magnetic fields on human bone marrow-derived mesenchymal stem cells. Bioelectromagnetics 36:267–276.
  • Kornicka, K., Marycz, K., Tomaszewski, K. A., et al. (2015). The effect of age on osteogenic and adipogenic differentiation potential of human adipose derived stromal stem cells (hASCs) and the impact of stress factors in the course of the differentiation process. Oxidative Med. Cell. Longevity 2015:e309169.
  • Kotani, H., Kawaguchi, H., Shimoaka, T., et al. (2002). Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J. Bone Miner. Res. 17:1814–1821.
  • Lindvall, O., Kokaia, Z. (2006). Stem cells for the treatment of neurological disorders. Nature 441:1094–1096.
  • Liu, C., Su, T., Li, F., et al. (2010). PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim. Biophys. Sin. 42:396–402.
  • Lopez, J. I., Mouw, J. K., Weaver, V. M. (2008). Biomechanical regulation of cell orientation and fate. Oncogene 27:6981–6993.
  • Marędziak, M., Marycz, K., Lewandowski, D., et al. (2014a). Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell. Dev. Biol. Anim 51:230–240.
  • Marędziak, M., Marycz, K., Śmieszek, A., et al. (2014b). The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell. Dev. Biol. Anim. 50:562–571.
  • Marędziak, M., Marycz, K., Śmieszek, A., et al. (2015). An in vitro analysis of pattern cell migration of equine adipose derived mesenchymal stem cells (EqASCs) using iron oxide nanoparticles (IO) in static magnetic field. Cell. Mol. Bioeng. 8:566–576.
  • Marycz, K., Toker, N., Grzesiak, J., et al. (2012). The therapeutic effect of autogenic adipose derived stem cells combined with autogenic platelet rich plasma in tendons disorders in horses in vitro and in vivo research. J. Anim. Vet. Adv. 11:4324–4331.
  • Marycz, K., Smieszek, A., Grzesiak, J., et al. (2014). Effects of steroids on the morphology and proliferation of canine and equine mesenchymal stem cells of adipose origin – in vitro research. Acta Veterinaria Hungarica 62:317–333.
  • Marycz, K., Krzak-Roś, J., Donesz-Sikorska, A., et al. (2014). The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO2, TiO2, and hybrid sol-gel-derived oxide coatings. J. Biomed. Mater. Res. Part A 102:4017–4026.
  • Nicpoń, J., Marycz, K., Grzesiak, J. (2013). Therapeutic effect of adipose-derived mesenchymal stem cell injection in horses suffering from bone spavin. Polish J. Vet. Sci. 16:753–754.
  • Nombela-Arrieta, C., Ritz, J., Silberstein, L. E. (2011). The elusive nature and function of mesenchymal stem cells. Nat. Rev. Mol. Cell Biol. 12:126–131.
  • Qiu, L., Tang, X., Zhong, M., et al. (2004). [Effect of static magnetic field on proliferation and cell cycle of osteoblast cell]. Shanghai Kou Qiang Yi Xue [Shanghai J. Stomatol.] 13:469–470.
  • Ratajczak, J., Wysoczynski, M., Hayek, F., et al. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia 20:1487–1495.
  • Schäfer, R., Bantleon, R., Kehlbach, R., et al. (2010). Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles. BMC Cell Biol. 11:22.
  • Shah, S. S., Howland, M. C., Chen, L.-J., et al. (2009). Micropatterning of proteins and mammalian cells on indium tin oxide. ACS Appl. Mater. Interfaces 1:2592–2601.
  • Shi, M., Liu, Z.-W., Wang, F.-S. (2011). Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin. Exp. Immunol. 164:1–8.
  • Stratton, D., Lange, S., Inal, J. M. (2013). Pulsed extremely low-frequency magnetic fields stimulate microvesicle release from human monocytic leukaemia cells. Biochem. Biophys. Res. Commun. 430:470–475.
  • Subramony, S. D., Dargis, B. R., Castillo, M., et al. (2013). The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34:1942–1953.
  • Teodori, L., Grabarek, J., Smolewski, P., et al. (2002). Exposure of cells to static magnetic field accelerates loss of integrity of plasma membrane during apoptosis. Cytometry 49:113–118.
  • Teodori, L., Albertini, M. C., Uguccioni, F., et al. (2006). Static magnetic fields affect cell size, shape, orientation, and membrane surface of human glioblastoma cells, as demonstrated by electron, optic, and atomic force microscopy. Cytometry Part A 69A:75–85.
  • Touyz, R. M., Schiffrin, E. L. (2000). Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 52:639–672.
  • Wei, X., Yang, X., Han, Z., et al. (2013). Mesenchymal stem cells: A new trend for cell therapy. Acta Pharmacol. Sin. 34:747–754.
  • Ye, H., Curcuru, A. (2015). Vesicle biomechanics in a time-varying magnetic field. BMC Biophys. 8:2.
  • Yoo, J., Kim, H.-S., Hwang, D.-Y. (2013). Stem cells as promising therapeutic options for neurological disorders. J. Cell. Biochem. 114:743–753.
  • Yuge, L., Okubo, A., Miyashita, T., et al. (2003). Physical stress by magnetic force accelerates differentiation of human osteoblasts. Biochem. Biophys. Res. Commun. 311:32–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.