810
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

The regenerative effects of electromagnetic field on spinal cord injury

, , &
Pages 74-87 | Received 27 Jul 2015, Accepted 21 Feb 2016, Published online: 11 Jul 2016

References

  • Ahmed, Z., Wieraszko, A. (2008). Combined effects of acrobatic exercise and magnetic stimulation on the functional recovery after spinal cord lesions. Neurotrauma 25:1257–1269.
  • Austin, J., Afshar, M., Fehlings, M. G. (2012). The relationship between localized subarachnoid inflammation and parenchymal pathophysiology after spinal cord injury. J. Neurotrauma, 29:1838–1849.
  • Avelev, V., Matur, R., Bikhari, D., Shcherbakova, N. A., et al. (2009). Initiation of locomotion in decerebrated cat by using of impulse magnetic field projected onto the spinal cord segments. Ross Fiziol Zh Im I M Sechenova 95:1216–1224.
  • Bai, W. F., Xu, W., Feng, Y., et al. (2013). Fifty-Hertz electromagnetic fields facilitate the induction of rat bone mesenchymal stromal cells to differentiate into functional neurons. Cytotherapy 15:961–970.
  • Bareyre, F., Schwab, M. E. (2003). Inflammation, degeneration and regeneration in the injured spinal cord: Insights from DNA microarrays. Trends Neurosci. 26:555–563.
  • Barnett, M., Larkman, P. M. (2007). The action potential. Pract. Neurol. 7:192–197.
  • Bethea, J., Castro, M., Keane, R. W., Lee, T. T., Dietrich, W. D., Yezierski, R. P. (1998). Traumatic spinal cord injury induces nuclear factor-kappaB activation. J. Neurosci. 18:3251–3260.
  • Bethea, J., Dietrich, W. D. (2002). Targeting the host inflammatory response in traumatic spinal cord injury. Curr. Opin. Neurol. 15:355–360.
  • Bethea, J., Magashima, H, Acosta, M. C., et al. (2009). Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma. 16:851–863.
  • Blank, M., Ed. (1995). Therapeutic aspects of electromagnetic fields for soft-tissue healing. Electromagn Fields: Biol. Interact. Mech. ACS Series 250:279–284.
  • Block, M., Zecca, L., Hong, J. S. (2007). Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8:57–69.
  • Borgens, R., Shi, R. (1995). Uncoupling histogenesis from morphogenesis in the vertebrate embryo by collapse of the transneural tube potential. Dev. Dyn. 203:456–467.
  • Bragin, D., Statom, G. L., Hagberg, S., Nemoto, E. M. (2014). Increases in microvascular perfusion and tissue oxygenation via pulsed electromagnetic fields in the healthy rat brain. J. Neurosurg. Spine 24:1–9.
  • Brundin, L., Brismar, H., Danilov, A. I., et al. (2003). Neural stem cells: A potential source for remyelination in neuroinflammatory disease. Brain Pathol. 13:322–328.
  • Capone, F., Corbetto, M., Barbato, C., et al. (2014). An open label, one arm, dose escalation study to evaluate the safety of extremely low frequency magnetic fields in acute ischemic stroke. Austin J. Cerebrovasc. Dis. Stroke 1:1002.
  • Chen, B., Cai, H. W., Zhang, L., et al. (2003). A pilot observation of curative effect of pulsed electromagnetic fields on post-menopausal osteoporosis. Chin. J. Rehabil. Therory Pract. 9:482–483.
  • Cho, H., Choi, Y. K., Lee, D. H., et al. (2013). Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord. Biotechnol. Appl. Biochem. 60:596–602.
  • Courtine, G., Van Den Brand, R., Musienko, P. (2011). Spinal cord injury: Time to move. Lancet 377:1896–1898.
  • Crowe, M., Sun, Z.-P., Battocletti, J., et al. (2003a). Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury. Spine 28:2660–2666.
  • Crowe, M., Sun, Z. P., Battocletti, J. H., et al. (2003b). Exposure to pulsed magnetic fields enhances motor recovery in cats after spinal cord injury. Spine 28:2660–2666.
  • Dam-Hieu, P., Agro, E., Seizeur, R., et al. (2010). Cervical cord compression due to delayed scarring around epidural electrodes used in spinal cord stimulation. J. Neurosurg. Spine 12:409–412.
  • Das, S., Kumar, S., Jain, S, et al. (2012). Exposure to ELF-magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord. Electromagn. Biol. Med. 31:180–194.
  • David, S., Greenhalgh, A. D., Kroner, A. (2015). Macrophage and microglial plasticity in the injured spinal cord. Neuroscience 307:311–318.
  • Didangelos, A., Iberl, M., Vinsland, E., et al. (2014). Regulation of IL-10 by chondroitinase ABC promotes a distinct immune response following spinal cord injury. J. Neurosci. 34:16424–16432.
  • Donnelly, D., Popovich, P. G. (2008). Inflammation and its fole in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp. Neurol. 209:378–388.
  • Durović, A., Miljković, D., Brdareski, Z., et al. (2009). Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury. Vojnosanit. Pregl. 66:22–28.
  • Ellis, W. (1987). Pulsed subcutaneous electrical stimulation in spinal cord injury: Preliminary results. Bioelectromagnetics 8:159–164.
  • Estenne, M., Pinet, C., De Troyer, A. (2000). Abdominal muscle strength in patients with tetraplegia. Am. J. Respir. Crit. Care Med. 161:707–712.
  • Franzini, A., Ferroli, P., Marras, C., Broggi, G. (2005). Huge epidural hematoma after surgery for spinal cord stimulation. Acta Neurochir. (Wien) 147:565–567.
  • Freeman, J., Manis, P. B., Snipes, G. J., et al. (1985). Steady growth cone currents revealed by a novel circularly vibrating proble: A possible mechanism underlying neurite growth. J. Neurosci. 13:257–283.
  • Fu, Y., Lin, C. C., Chang, J. K., et al. (2014). A novel single pulsed electromagnetic field stimulates osteogenesis of bone marrow mesenchymal stem cells and bone repair. PLoS One 9:e91581.
  • Fuchs, E., Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural. Plast. 2014:10. doi:10.1155/2014/541870.54187
  • Gao, K., Yu, Y. L., Qi, D. Y., et al. (2004a). Analysis of curative effect of pulsed electromagnetic field on pain of primary osteoporosis. Chin. J. Phys. Med. Rehabil. 26:669–670.
  • Gao, K., Yu, Y. L., Qi, D. Y., et al. (2004b).Effects of low frequency pulsed electromagnetic field on pain, bone mineral density and biomarkers of bone in patients with primary osteoporosis. Chin. J. Clin. Rehabil. 8:5913–5915.
  • Gao, Y., Zhang, Y. (2006). Treatment of pulsed electromagnetic field on primary osteoporosis. J. Med. Forum. 27:59–60.
  • Garland, D., Adkins, R. H., Matsuno, N. N., Stewart, C. A. (1999). The effect of pulsed electromagnetic fields on osteoporosis at the knee in individuals with spinal cord injury. Spinal. Cord. Med. 22:239–245.
  • Gensel, J., Zhang, B (2015a). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. Jan 8. pii:S0006–8993:01752–1.
  • Gensel, J., Zhang, B. (2015b). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 1619:1–11.
  • Gerasimenko, Y., Gorodnichev, R., Machueva, E., et al. (2010). Novel and direct access to the human locomotor spinal circuitry. J. Neurosci. 30:3700–3708.
  • Goldberg, J. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Curr. Opin. Neurobiol. 14:551–557.
  • Greenhalgh, A., David, S. (2014). Differences in the phagocytic response of microglia and peripheral macrophages after spinal cord injury and its effects on cell death. J. Neurosci. 34:6316–6322.
  • Hannemann, P., Mommers, E. H., Schots, J. P., et al. (2014). The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: A systematic review and meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 134:1093–1106.
  • Health, N. I. O. (2011). National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th edition, 77.
  • Hernández-Labrado, G., Polo, J. L., López-Dolado, E., Collazos-Castro, J. E. (2011). Spinal cord direct current stimulation: Finite element analysis of the electric field and current density. Med. Biol. Eng. Comput. 49:417–429.
  • Hille, B. (1992). Ionic Channels of Excitable Membranes. Second Edition. Sunderland, MA: Sinauer Associates Inc.
  • Hinkle, L., McCaig, C. D., Robinson, K. R. (1981). The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 314:121–135.
  • Horner, P., Gage, F. H. (2000). Regenerating the damaged central nervous system. Nature 407:963–970.
  • Hotary, K., Robinson, K. R. (1991). The neural tube of the Xenopus embryo maintains a potential difference across itself. Brain Res. Dev. Brain Res. 59:65–73.
  • Hunanyan, A., Petrosyan, H. A., Alessi, V., Arvanian, V. L. (2012). Repetitive spinal electromagnetic stimulations opens a window of synaptic palsticity in damaged spinal cord: Role of NMDA receptors. J. Neurophysiol. 107:3027–3029.
  • Ito, H., Bassett, C. A. (1983). Effect of weak, pulsing electromagnetic fields on neural regeneration in the rat. Clin. Orthop. Relat. Res. Dec(181):283–290.
  • Jaffe, L., Poo, M. M. (1979). Neurites grow faster towards the cathode than the anode in a steady field. J Exp. Zool. 209:115–128.
  • Jin, K., Mao, X. O., Greenberg, D. A. (2006). Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical nuerons via Rho kinase signaling. J. Neurobiol. 66:2326–2342.
  • Jones, T., McDaniel, E. E., Popovich, P. G. (2005). Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr. Pharm. Des. 11:1223–1236.
  • Kanje, M., Rusovan, A., Sisken, B., Lundborg, G. (1993). Pretreatment of rats with pulsed electromagnetic fields enhances regeneration of the sciatic nerve. Bioelectromagnetics 14:353–359.
  • Kigerl, K., Gensel, J. C., Ankeny, D. P., et al. (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29:13435–13444.
  • Kim, H., Jung, J., Park, J. H., et al. (2013). Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp. Biol. Med. 238:923–931.
  • Kim, H. J., Jung, J., Park, J. H., et al. (2013 Aug 1). Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp. Biol. Med. (Maywood), 238: 2013 Aug.
  • Kim, S., Im, W.-S., Kang, L., et al. (2008). The application of magnets directs the orientation of neurite outgrowth in cultured neuronal cells. J Neurosci Methods 174:91–96.
  • Kopell, N., Ermentrout, B. (2004). Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc. Natl. Acad. Sci. USA 101:15482–15487.
  • Koppes, A., Seggio, A. M., Thompson, D. M. (2011). Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J. Neural. Eng. 8(4): 046023.
  • Kuffler, D. (2012). Maximizing neuroprotection: Where do we stand? Ther. Clin. Risk Manag. 8:185–194.
  • Kurnellas, M., Nicot, A, Shull, G. E., Elkabes, S. (2005). Plasma membrane calcium APTase deficiency causes neuronal pathology in the spinal cord: A potential mechanism for neruodegeneration in multiple sclerosis and spinal cord injury. FASEB J. 19:298–300.
  • Lakshmi, D., Joshi, P. G. (2006). Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and inductin of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141:179–189.
  • Lee, J., McLeod, K. J. (2000). Morphologic responses of osteoblast-like cells in monolayer culture to ELF electromagnetic fields. Bioelectromagnetics 21:129–136.
  • Lekhraj, R., Cynamon, D. E., Deluca, S. E., et al. (2014). Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line. J. Neurosci. Res. 92:761–771.
  • Levecchi, M. (2011). Spinal cord injury. Continuum (Minneap Minn), 17:568–583.
  • Lindvall, O., Kokaia, Z. (2006). Stem cells for the treatment of neurologial disorders. Nature 441:1094–1096.
  • Liu, J., Lamb, D., Chou, M. M., et al. (2007). Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Mol. Biol. Cell. 18:1375–1384.
  • Longo, F., Yang, T, Hamilton, S., et al. (1999). Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55:230–237.
  • Luo, X., Sun, J. C., Liu, F., et al. (2012). Energy controllable steep pulse (ECSP) treatment suppresses tumor growth in rats implanted with Walker 256 carcinosarcoma cells through apoptosis and an antitumor immune response. Oncol. Res. 20:31–37.
  • Ma, M., Wei, T., Boring, L., et al. 2002 Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J. Neurosci. Res. 68:691–702.
  • Macias, M., Battocletti, J. H., Sutton, C. H., et al. (2000a). Directed and enhanced neurite growth and pulsed magnetic field stimulation. Bioelectromagnetics 21:272–286.
  • Macias, M., Battocletti, J. H., Sutton, C. H., et al. (2000b). Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21:272–286.
  • Martino, G., Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nat. Rev. Neurosci. 7:395–406.
  • Mayer-Wagner, S., Passberger, A., Sievers, B., et al. (2011). Effects of low frequency electromagnetic fields on the chondrogenic differentiation of human mesenchymal stem cells. Bioelectromagnetics 32:283–290.
  • McCaig, C. (1986). Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J. Physiol. 375:55–69.
  • McCaig, C. (1987). Spinal neurite reabstorption and regrowth in vitro depend on the polarity of an applied electric field. Development 100:31–41.
  • McCaig, C. (1990). Nerve growth in a small applied electric field and the effects of pharmacologial agents on rate and orientation. J. Cell Sci. 95:617–622.
  • McCaig, C., Sangster, L., Stewart, R. (2000). Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev. Dyn. 217:299–308.
  • McCaig, C., Song, B., Rajnicek, A. M. (2009). Electrical dimensions in cell science. J. Cell Sci. 122:4267–4276.
  • McDonald, J., Belegu, V. (2006). Demyelination and remyelination after spinal cord injury. J Neurotrauma 23:345–359.
  • Mohammadi, R., Faraji, D., Alemi, H., Mokarizadeh, A. (2014). Pulsed electromagnetic fields accelerate functional recovery of transected sciatic nerve bridged by chitosan conduit: An animal model study. Int. J. Surg. 12:1278–1285.
  • Muehsam, D., Pilla, A. A. (1999). The sensitivity of cells and tissues to exogenous fields; effects of target system initial state. Bioelectrochem. Bioenerg. 48:35–42.
  • O’Donnell, M., Ting, A. T. (2010). Chronicles of a death foretold: Dual sequential cell death checkpoints in TNF signaling. Cell Cycle 9:1065–1071.
  • Olson, J. (2010). Immune response by microglia in the spinal cord. Ann. N Y Acad. Sci. 1198:271–278.
  • Orgel, M., O’Brien, W. J., Murray, H. M. (1984). Pulsing electromagnetic field therapy in nerve regeneration: An experimental study in the cat. Plast. Reconstr. Surg. 73:173–183.
  • Otto, W., Sarraf, C. E. (2012). Culturing and differentiating human mesenchymal stem cells for biocompatible scaffolds in regenerative medicine. Methods Mol. Biol. 806:407–426.
  • Oyarzun-Ampuero, F., Vidal, A, Concha, M, et al. (2015). Nanoparticles for the treatment of wounds. Curr. Pharm. Des. 21:4329–4341.
  • Park, J., Seo, Y. K., Yoon, H. H., et al. (2013). Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem. Int. 62:418–424.
  • Park, T., Lee, S. Y. (2007). Effects of neuronal magnetic fields on MRI: Numerical analysis with axon and dendrite models. Neuroimage, 35:531–538.
  • Pashut, T., Wolfus, S., Friedman, A., et al. (2011). Mechanisms of magnetic stimulation of central nervous system neurons. PLoS Comput. Biol. 7:e1002022.
  • Patel, N., Poo, M. M. (1982a.) Orientation of neurite growth by extracellular elecric fields. J. Neurosci. 2:483–496.
  • Patel, N., Poo, M. M. (1982b). Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2:483–496.
  • Patel, V., Burger, E., Brown, C. (2010). Immunological response to spinal cord injury: Impact on the timing of spine surgery Spine Trauma, Berlin/Heidelberg:, 73–83.
  • Peridou, N., Plenz, D., Silva, A. C., et al. (2006). Direct magnetic resonance detection of neuronal electrical activity. Proc. Natl. Acad. Sci. U S A, 103:16015–16020.
  • Petraglia, F., Farber, S. H., Gramer, R., et al. (2015). The incidence of spinal cord injury in implantation of percutaneous and paddle electrodes for spinal cord stimulation. Neuromodulation Dec 8. doi: 10.1111/ner.12370. [ Epub ahead of print].
  • Piacentini R1, R. C., Mezzogori, D., Azzena, G. B., Grassi, C. (2008). Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J. Cell Physiol. 215:129–139.
  • Piacentini, R., Ripoli, C., Mezzogori, D., et al. (2008a). Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Cav1-channel activity. J. Cell. Physiol. 215:129–139.
  • Piacentini, R., Ripoli, C., Mezzogori, D., et al. (2008b). Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol, 215:129–139.
  • Popovich, P., Guan, Z., Wei, P., et al. (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol. 158:351–365.
  • Portincasa, A., Gozzo, G., Parisi, D., et al. (2007). Microsurgical treatment of injury to pheripheral nerves and lower limbs: A critical review of the last 8 years. Microsurgery 27:455–462.
  • Raji, A., Bowden, R. E. (1983). Effects of high-peak pulsed electromagnetic field on the degeneration and regeneration of the common peroneal nerve in rats. J. Bone Joint Surg. Br. 65:478–492.
  • Rajnicek, A., Robinson, K. R., McCaig, C. D. (1998). The direction of neurite growth in a weak DC electric field depends on the subtratum: Contributions of adhesivity and net surface charge. Dev. Biol. 203:412–423.
  • Reyes, O., Sosa, I., Kuffler, D. P. (2005). Promoting neurological recovery following a traumatic peripheral nerve injury. P R Health Sci. J. 24:215–223.
  • Rolls, A., Shechter, R., London, A., et al. (2008). Two faces of chondroitin sulfate proteoglycan in spinal cord repair: A role in microglia/macrophage activation. PLoS Med. 5:e171.
  • Rolls, A., Shechter, R., Schwartz, M. (2009). The bright side of the glial scar in CNS repair. Nat Rev. Neurosci. 10:235–241.
  • Rosenberg, L., Wrathall, J. R. (1997). Quantitative analysis of acute axonal pathology in experimental spinal cord contusion. J. Neurotrauma 14:823–838.
  • Ross, C., Harrison, B. S. (2013). Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages. J. Inflamm. Res. 6:45–51.
  • Ross, C., Siriwardane, M. L., Almeida-Porada, G., et al. (2015). The effect of low-frequency electromagnetic field on human bone-marrow derived mesenchymal stem/progenitor cell differentiation. Stem Cell Res. 15:96–108.
  • Rusovan, A., Kanje, M. (1991). Stimulation of regeneration of the rat sciatic nerve by 50 Hz sinusoidal magnetic field. Exp. Neurol. 112:302–305.
  • Sandyk, R. (1995). Chronic relapsing multiple sclerosis: A case of rapid recovery by application of weak electromagnetic fields. Int. J. Nerosci. 82:223–242.
  • Sandyk, R., Iacono, R. P. (1993). Resolution of long-standing symptoms of multiple sclerosis by application of picoTesla range magnetic fields. Int. J. Nerosci. 70:255–269.
  • Sandyk, R., Iacono, R. P. (1994). Improvement by picoTesla range magnetic fields of perceptual-motor performance and visual memory in a patient with chronic progressive multiple sclerosis. Int. J. Neurosci. 78:53–66.
  • Sayenko, D., Angeli, C., Harkema, S. J., et al. (2014). Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 111:1088–1099.
  • Schechter, R., Rapolo, C., London, A., et al. (2011). The glial scar-monocyte interplay: A pivotal resolution phase in spinal cord repair. PLoS ONE 6:e27969.
  • Schnabel, V., Struijk, J. J. (1999). Magnetic and electrical stimulation of undulating nerve fibres: A simulation study. Med. Biol. Eng. Comput. 37:704–709.
  • Sci-Database, N. (2014). Spinal cord injury (SCI) facts and figures at a glance. The National SCI Statistical Center, Retrieved April, 14:2015.
  • Shapiro, S., Borgens, R., Pascuzzi, R., et al. (2005). Oscillating field stimulation for complete spinal cord injury in humans: Phase 1 trial. J. Neurosurg. Spine 2:3–10.
  • Shi, R., Borgens, R. B. (1994). Embryonic neuroepithelial sodium transport, the resulting physiological potential, and cranial development. Dev. Biol. 165:105–116.
  • Shi, R., Borgens, R. B. (1995). Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101–114.
  • Shiraishi, M., Tanabe, A., Saito, N., Sasaki, Y. (2006). Unphosphorylated MARCKS is involved in neurite initiation induced by insulin-like growth factor-! in SH-SY5Y cells. J. Cell Physiol. 209:1029–1038.
  • Silver, J., Miller, J. H. (2004b). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–156.
  • Sisken, B. (1988). Effects of magnetic fields on nerve regeneration. In: Marino, A. Modern Bioelectricity. New York: Dekker. pp. 497–527.
  • Sisken, B., Kanje, M., Lundborg, G., (1989a). Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic field. Brain Res. 485:309–316.
  • Sisken, B., Kanje, M., Lundborg, G., et al. (1989b). Stimulation of rat sciatic nerve regeneration with pulsed electromagnetic field. Brain Res. 485:309–316.
  • Sisken, B., McLeod, B., Pilla, A. A. (1984). PMF, direct current and neuronal regeneration: Effect of field geometry and current density. J. Bioelectricity 3:81–101.
  • Sisken, B., Walker, J., Orgel, M. (1993). Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem. 51:409.
  • Smith, M., Pereda, A. E. (2003). Chemical synatic activity modulates nearby electrical synapses. Proc. Natl. Acad. Sci. USA 100:4849–4854.
  • Smith, T., Wong-Gibbons, D., Maultsby, J. (2004). Microcirculatory effects of pulsed electromagnetic fields. J. Orthopaedic Res. 22:80–84.
  • So, P., Yip, P. K., Bunting, S., et al. (2006). Interactions between retinoic acid, nerve growth factor and sonic hedgehog signalling pathways in neurite outgrowth. Dev. Biol. 298:167–175.
  • Stewart, R., Erskine, L., McCaig, D. C. (1995). Calcium channel subtypes and intracellular calcium stores modulate electric field-stimlated and -oriented nerve growth. Dev. Biol. 171:340–351.
  • Sun, L., Hsieh, D. K., Yu, T. C., et al. (2009). Effect of pulsed electromagnetic field on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells. Bioelectromagnetics 30:251–260.
  • Szpara, M., Vranizan, K., Tai, Y. C., et al. (2007). Analysis of gene expression during neurite outgrowth and regeneration. BMC Neurosci. 8:100.
  • Tabrah, F., Hoffmeier, M., Gilbert, F., et al. (1990). Bone density changes in osteoporsis-prone women exposed to pulsed electormagnetic fields (PEMFs). J. Bone Miner. Res. 5:93–100.
  • Vogelezang, M., Forster, U. B., Han, J., Ginsberg, M. H. (2007). Neurite outgrowth on a fibronectin isoform expressed during periperal nerve regeneration is mediated by the interaction of paxillin and alpha4beta1 integrins. BMC Neurosci. 8:44.
  • Walker, J., Evans, J. M., Resig, P., et al. (1994a). Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp. Neurol. 125:302–305.
  • Walker, J., Evans, J. M., Resig, P., et al. (1994). Enchancement of functional recovery following a crush lesion in the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp. Neurol. 125:302–305.
  • Walker, J., Evans, J. M., Resig, P., et al. (1994b). Enhancement of functional recovery following a crush lesion to the rat sciatic nerve by exposure to pulsed electromagnetic fields. Exp. Neurol. 125:302–305.
  • Walker, J., Kryscio, R., Smith, J., et al. (2007). Electromagnetic field treatment of nerve crush injury in a rat model: Effect of signal configuration on functional recovery. Bioelectromagnetics 28:256–263.
  • Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB, 6:3177–3185.
  • Weng, Y., Gao, Q. Y., Shao, H. W., et al. (2003). Ostoporotic pain and effectiveness of pulsed electromagnetic field in treating pain in patients with osteoporosis. Chin. J. Osteoporos. 9:317.
  • Xiong, Q., Zhao, X. E. (2007). Effects of low frequency pulsed elecgtromagnetic field on patients with osteoporosis. Jiangxi. Med. 42:196–197.
  • Yang, S., Wu, J. C., Shi, H. H. Gu, Z. H. (2004). Clinical value of POP-01 pulsed electromagnetic field in the treatment of osteoprosis. Acad. J. Shanghai Sec. Med. Univ. 24:469–471.
  • Yong, Y., Ming, Z. D., Feng, L., et al. (2014). Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. J. Tissue Eng. Regen. Med. doi: 10.1002/term.1864
  • Yuan, Y., He, C. (2013). The glial scar in spinal cord injury and repair. Neurosci. Bull. 29:421–435.
  • Zamburlin, P., Gilardino, A., Dalmazzo, S., et al. (2006). Temporal dynamics of neurite outgrowth promoted by basic fibroblast growth factor in chick ciliary ganglia. J. Neurosci. Res. 84:505–514.
  • Zhang, Y., Ding, J., Duan, W., Fan, W. (2005). Influence of pulsed electromagnetic field with different pulse duty cycles on neurite outgrowth in PC12 rat phenochromocytoma cells. Bioelectromagnetics 26:406–411.
  • Zhao, X., Chen, J. (2005). Analysis of curative effect of pulsed electromagnetic fields on 116 patients with post-menopausal osteoprorsis. Sichuan. Med. J. 26:1030–1031.
  • Zhou, Q., He, P. Y., Chen, W. X., et al. (2006). Curative effect of electromagnetic field on senile osteoporosis patients. Fujian Med. J. 28:20–21.
  • Zhou, X., He, X, Ren, Y. (2014). Function of microglia and macrophages in secondary damage after spinal cord injury. Neural. Regen. Res. 9:1787–1795.
  • Zienowicz, R., Thomas, B. A., Kurtz, W. H., Orgel, M. G. (1991). A multivariate approach to the treatment of peripheral nerve transection injury: The role of electromagnetic field therapy. Plast Reconstr. Surg. 87:122–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.