3,054
Views
69
CrossRef citations to date
0
Altmetric
ARTICLE

Interleukin-13 Induces Mucin 5AC Production Involving STAT6/SPDEF in Human Airway Epithelial Cells

, , , &
Pages 83-92 | Received 05 Oct 2010, Accepted 29 Dec 2010, Published online: 28 Jan 2011

REFERENCES

  • Akimoto T, Numata F, Tamura M, Takata Y (1998). Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT) 6-deficient mice. J Exp Med. 187: 1537–1542.
  • Ali MS, Wilson JA, Pearson JP (2002). Mixed nasal mucus as a model for sinus mucin gene expression studies. Laryngoscope. 112: 326–31.
  • Atherton HC, Jones G, Danahay H (2003). IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung Cell Mol Physiol. 285: L730–L739.
  • Caramori G, Casolari P, Di Gregorio C, Saetta M, Baraldo S, Boschetto P, Ito K, Fabbri LM, Barnes PJ, Adcock IM, Cavallesco G, Chung KF, Papi A (2009). MUC5AC expression is increased in bronchial submucosal glands of stable COPD patients. Histopathology. 55: 321–331.
  • Chen G, Korfhagen TR, Xu Y, Kitzmiller J, Wert SE, Maeda Y, Gregorieff A, Clevers H, Whitsett JA (2009). SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. J Clin Invest. 119: 2914–2924.
  • Davies JR, Herrmann A, Russell W, Svitacheva N, Wickström C, Carlstedt I (2009). Respiratory tract mucins: Structure and expression patterns. Novartis Found Symp. 248:76–88.
  • de Vries JE (1998). The role of IL-13 and its receptor in allergy and inflammatory responses. J Allergy Clin Immunol. 102: 165–169.
  • Gruber AD, Elble RC, Ji HL, Schreur KD, Fuller CM, Pauli BU (1998). Genomic cloning, molecular characterization, and functional analysis of human CLCA1, the first human member of the family of Ca2+ -activated Cl− channel proteins. Genomics. 54: 200–214.
  • Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998). Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 282: 2261–2263.
  • Hasegawa Y, Murph M, Yu S, Tigyi G, Mills GB (2008). Lysophosphatidic acid (LPA)-induced vasodilator-stimulated phosphoprotein mediates lamellipodia formation to initiate motility in PC-3 prostate cancer cells. Mol Oncol. 2: 54–69.
  • Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Paré PD (2004). The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 350: 2645–2653.
  • Hovenberg HW, Davies JR, Carlstedt I (1996a). Different mucins are produced by the surface epithelium and the submucosa in human trachea: Identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 318: 319–324.
  • Hovenberg HW, Davies JR, Herrmann A, Lindén CJ, Carlstedt I (1996b). MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J. 13: 839–847.
  • Kettle R, Simmons J, Schindler F, Jones P, Dicker T, Dubois G, Giddings J, Van Heeke G, Jones CE (2010). Regulation of neuregulin 1beta1-induced MUC5AC and MUC5B expression in human airway epithelium. Am J Respir Cell Mol Biol. 42: 472–481.
  • Kono Y, Nishiuma T, Okada T, Kobayashi K, Funada Y, Kotani Y, Jahangeer S, Nakamura S, Nishimura Y (2010). Sphingosine kinase 1 regulates mucin production via ERK phosphorylation. Pulm Pharmacol Ther. 23: 36–42.
  • Kondo M, Tamaoki J, Takeyama K, Nakata J, Nagai A (2002). Interleukin-13 induces goblet cell differentiation in primary cell culture from guinea pig tracheal epithelium. Am J Respir Cell Mol Biol. 27: 536–541.
  • Kumar RK, Herbert C, Yang M, Koskinen AM, McKenzie AN, Foster PS (2002). Role of interleukin-13 in eosinophil accumulation and airway remodelling in a mouse model of chronic asthma. Clin Exp Allergy. 32: 1104–1111.
  • Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ (2002). Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 8: 885–889.
  • Kuperman DA, Huang X, Nguyenvu L, Holscher C, Brombacher F, Erle DJ (2005). IL-4 receptor signaling in Clara cells is required for allergen-induced mucus production. J Immunol. 175: 3746–3752.
  • Kuperman D, Schofield B, Wills-Karp M, Grusby MJ (1998). Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med. 187: 939–948.
  • Kuyper LM, Paré PD, Hogg JC, Lambert RK, Ionescu D, Woods R, Bai TR (2003). Characterization of airway plugging in fatal asthma. Am J Med. 115: 6–11.
  • Lai HY, Rogers DF (2010). Mucus hypersecretion in asthma: Intracellular signalling pathways as targets for pharmacotherapy. Curr Opin Allergy Clin Immunol. 10: 67–76.
  • Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005). Interleukin-1β causes pulmonary inflammation, emphsyema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 32: 311–318.
  • Minty A, Asselin S, Bensussan A, Shire D, Vita N, Vyakarnam A, Wijdenes J, Ferrara P, Caput D (1997). The related cytokines interleukin-13 and interleukin-4 are distinguished by differential production and differential effects on T lymphocytes. Eur Cytokine Netw. 8: 203–213.
  • Nakanishi A, Morita S, Iwashita H, Sagiya Y, Ashida Y, Shirafuji H, Fujisawa Y, Nishimura O, Fujino M (2001). Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci U S A. 98: 5175–5180.
  • Oettgen P, Finger E, Sun Z, Akbarali Y, Thamrongsak U, Boltax J, Grall F, Dube A, Weiss A, Brown L, Quinn G, Kas K, Endress G, Kunsch C, Libermann TA (2000). PDEF, a novel prostate epithelium-specific ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem. 275: 1216–1225.
  • Ordoñez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, Hotchkiss JA, Zhang Y, Novikov A, Dolganov G, Fahy JV (2001). Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 163: 517–523.
  • Park KS, Korfhagen TR, Bruno MD, Kitzmiller JA, Wan H, Wert SE, Khurana Hershey GK, Chen G, Whitsett JA (2007). SPDEF regulates goblet cell hyperplasia in the airway epithelium. J Clin Invest. 117: 978–988.
  • Persson S, Rosenquist M, Knoblach B, Khosravi-Far R, Sommarin M, Michalak M (2005). Diversity of the protein disulfide isomerase family: Identification of breast tumor induced Hag2 and Hag3 as novel members of the protein family. Mol Phylogenet Evol. 36: 734–740.
  • Reid CJ, Gould S, Harris A (1997). Developmental expression of mucin genes in the human respiratory tract. Am J Respir Cell Mol Biol. 17: 592–598.
  • Rogers DF (2003). The airway goblet cell. Int J Biochem Cell Biol. 35: 1–6.
  • Rogers DF (2007). Physiology of airway mucus secretion and pathophysiology of hypersecretion. Respir Care. 52: 1134–1149.
  • Rose MC, Voynow JA (2006). Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev. 86: 245–278.
  • Vestbo J (2002). Epidemiological studies in mucus hypersecretion. Novartis Found Symp. 248: 3–12.
  • Viswanathan H, Brownlee IA, Pearson JP, Carrie S (2006). MUC5B secretion is up-regulated in sinusitis compared with controls. Am J Rhinol. 20: 554–557.
  • Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA (2004). Foxa2 regulates alveolarization and goblet cell hyperplasia. Development. 131: 953–964.
  • Whittaker L, Niu N, Temann UA, Stoddard A, Flavell RA, Ray A, Homer RJ, Cohn L (2002). Interleukin-13 mediates a fundamental pathway for airway epithelial mucus induced by CD4 T cells and interleukin-9. Am J Respir Cell Mol Biol. 27: 593–602.
  • Williams OW, Sharafkhaneh A, Kim V, Dickey BF, Evans CM (2006). Airway mucus: From production to secretion. Am J Respir Cell Mol Biol. 34: 527–536.
  • Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998). Interleukin-13: Central mediator of allergic asthma. Science. 282: 2258–2261.
  • Yamada N, Tamai Y, Miyamoto H, Nozaki M (2000). Cloning and expression of the mouse Pse gene encoding a novel Ets family member. Gene. 241: 267–274.
  • Yasuo M, Fujimoto K, Tanabe T, Yaegashi H, Tsushima K, Takasuna K, Koike T, Yamaya M, Nikaido T (2006). Relationship between calcium-activated chloride channel 1 and MUC5AC in goblet cell hyperplasia induced by interleukin-13 in human bronchial epithelial cells. Respiration. 73: 347–359.
  • Zhen G, Park SW, Nguyenvu LT, Rodriguez MW, Barbeau R, Paquet AC, Erle DJ (2007). IL-13 and epidermal growth factor receptor have critical but distinct roles in epithelial cell mucin production. Am J Respir Cell Mol Biol. 36: 244–253.
  • Zheng T, Zhu Z, Wang Z, Homer RJ, Ma Bing, Riese RJ Jr, Chapman HA, Shapiro SD, Elias JA (2000). Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest. 106: 1081–1093.
  • Zhou Y, Shapiro M, Dong Q, Louahed J, Weiss C, Wan S, Chen Q, Dragwa C, Savio D, Huang M, Fuller C, Tomer Y, Nicolaides NC, McLane M, Levitt RC (2002). A calcium-activated chloride channel blocker inhibits goblet cell metaplasia and mucus overproduction. Novartis Found Symp. 248: 150–165.
  • Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J (1998). Pulmonary expression of interleukin-13 causes inlammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 103: 779–788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.