1,366
Views
17
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

RAS signalling in the colorectum in health and disease

, &
Pages 1-9 | Received 30 Aug 2011, Accepted 07 Dec 2011, Published online: 10 Jan 2012

REFERENCES

  • Abubaker J, Bavi P, Al-Haqawi W, Sultana M, Al-Harbi S, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Uddin S, Al-Kuraya KS (2009). Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J Pathol. 219: 435–445.
  • Akao Y, Nakagawa Y, Naoe T (2006). let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharmacuet Bull. 29: 903–906.
  • Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD (2008). Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 26: 1626–1634.
  • Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, Young J, Walsh T, Ward R, Hawkins N, Beranek M, Jandik P, Benamouzig R, Jullian E, Laurent-Puig P, Olschwang S, Muller O, Hoffmann I, Rabes HM, Zietz C, Troungos C, Valavanis C, Yuen ST, Ho JW, Croke CT, O'Donoghue DP, Giaretti W, Rapallo A, Russo A, Bazan V, Tanaka M, Omura K, Azuma T, Ohkusa T, Fujimori T, Ono Y, Pauly M, Faber C, Glaesener R, de Goeij AF, Arends JW, Andersen SN, Lovig T, Breivik J, Gaudernack G, Clausen OP, De Angelis PD, Meling GI, Rognum TO, Smith R, Goh HS, Font A, Rosell R, Sun XF, Zhang H, Benhattar J, Losi L, Lee JQ, Wang ST, Clarke PA, Bell S, Quirke P, Bubb VJ, Piris J, Cruickshank NR, Morton D, Fox JC, Al-Mulla F, Lees N, Hall CN, Snary D, Wilkinson K, Dillon D, Costa J, Pricolo VE, Finkelstein SD, Thebo JS, Senagore AJ, Halter SA, Wadler S, Malik S, Krtolica K, Urosevic N (2001). Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Canc. 85: 692–696.
  • Arena S, Isella C, Martini M, de Marco A, Medico E, Bardelli A (2007). Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers. Canc Res. 67: 8468–8476.
  • Barbacid M (1987). ras genes. Annu Rev Biochem. 56: 779–827.
  • Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, Frohling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, Hahn WC (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 462: 108–112.
  • Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA, Jr., Marks JR, Dressman HK, West M, Nevins JR (2006). Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 439: 353–357.
  • Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, Miura J, Wiener HH, Wright L, Saba SG, Yim D, Fein A, Perez de Castro I, Li C, Thompson CB, Cox AD, Philips MR (2006). PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell. 21: 481–493.
  • Brosens RP, Haan JC, Carvalho B, Rustenburg F, Grabsch H, Quirke P, Engel AF, Cuesta MA, Maughan N, Flens M, Meijer GA, Ylstra B (2010). Candidate driver genes in focal chromosomal aberrations of stage II colon cancer. J Pathol. 221: 411–424.
  • Castagnola P, Giaretti W (2005). Mutant KRAS, chromosomal instability and prognosis in colorectal cancer. Biochim Biophys Acta. 1756: 115–125.
  • Cobb MH, Goldsmith EJ (1995). How MAP kinases are regulated. J Biol Chem. 270: 14843–14846.
  • Cogoi S, Paramasivam M, Membrino A, Yokoyama KK, Xodo LE (2010). The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J Biol Chem. 285: 22003–22016.
  • De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, Penault-Llorca F, Rougier P, Vincenzi B, Santini D, Tonini G, Cappuzzo F, Frattini M, Molinari F, Saletti P, De Dosso S, Martini M, Bardelli A, Siena S, Sartore-Bianchi A, Tabernero J, Macarulla T, Di Fiore F, Gangloff AO, Ciardiello F, Pfeiffer P, Qvortrup C, Hansen TP, Van Cutsem E, Piessevaux H, Lambrechts D, Delorenzi M, Tejpar S (2010). Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 11: 753–762.
  • DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 475: 106–109.
  • Downward J (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Canc. 3: 11–22.
  • Fearon ER, Vogelstein B (1990). A genetic model for colorectal tumorigenesis. Cell. 61: 759–767.
  • Fest T, Mougey V, Dalstein V, Hagerty M, Milette D, Silva S, Mai S (2002). c-MYC overexpression in Ba/F3 cells simultaneously elicits genomic instability and apoptosis. Oncogene. 21: 2981–2990.
  • Fukasawa K, Vande Woude GF (1997). Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol Cell Biol. 17: 506–518.
  • Gao JS, Zhang Y, Tang X, Tucker LD, Tarwater PM, Quesenberry PJ, Rigoutsos I, Ramratnam B (2011). The Evi1, microRNA-143, K-Ras axis in colon cancer. FEBS Lett. 585: 693–699.
  • Goldfarb M, Shimizu K, Perucho M, Wigler M (1982). Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells. Nature. 296: 404–409.
  • Guerra C, Mijimolle N, Dhawahir A, Dubus P, Barradas M, Serrano M, Campuzano V, Barbacid M (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Canc Cell. 4: 111–120.
  • Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM, Settleman J, Giovannini M, Jacks T (2008). Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 40: 600–608.
  • Hall A, Marshall CJ, Spurr NK, Weiss RA (1983). Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature. 303: 396–400.
  • Harvey JJ (1964). An unidentified virus which causes the rapid production of tumours in mice. Nature. 204: 1104–1105.
  • Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002). A central role for JNK in obesity and insulin resistance. Nature. 420: 333–336.
  • Janssen KP, el-Marjou F, Pinto D, Sastre X, Rouillard D, Fouquet C, Soussi T, Louvard D, Robine S (2002). Targeted expression of oncogenic K-ras in intestinal epithelium causes spontaneous tumorigenesis in mice. Gastroenterology. 123: 492–504.
  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005). RAS is regulated by the let-7 microRNA family. Cell. 120: 635–647.
  • Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC, Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ, Langer C, Moore MJ, Zalcberg JR (2008). K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 359: 1757–1765.
  • Katz ME, McCormick F (1997). Signal transduction from multiple Ras effectors. Curr Opin Genet Dev. 7: 75–79.
  • Kinzler KW, Vogelstein B (1996). Lessons from hereditary colorectal cancer. Cell. 87: 159–170.
  • Krens LL, Baas JM, Gelderblom H, Guchelaar HJ (2010). Therapeutic modulation of k-ras signaling in colorectal cancer. Drug Discov Today. 15: 502–516.
  • Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 105: 3903–3908.
  • Lamb J, Ramaswamy S, Ford HL, Contreras B, Martinez RV, Kittrell FS, Zahnow CA, Patterson N, Golub TR, Ewen ME (2003). A mechanism of cyclin D1 action encoded in the patterns of gene expression in human cancer. Cell. 114: 323–334.
  • Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 274: 7936–7940.
  • Li YC, Chen CR, Chang EC (2000). Fission yeast Ras1 effector Scd1 interacts with the spindle and affects its proper formation. Genetics. 156: 995–1004.
  • Linardou H, Dahabreh IJ, Kanaloupiti D, Siannis F, Bafaloukos D, Kosmidis P, Papadimitriou CA, Murray S (2008). Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 9: 962–972.
  • Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, Edwards PA, Smith PD, Cook SJ (2011). Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci Signal. 4: ra17.
  • Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE, Winton DJ, Arends MJ (2007). Conditional expression of mutated K-ras accelerates intestinal tumorigenesis in Msh2-deficient mice. Oncogene. 26: 4415–4427.
  • Luo F, Brooks DG, Ye H, Hamoudi R, Poulogiannis G, Patek CE, Winton DJ, Arends MJ (2009). Mutated K-rasAsp12 promotes tumourigenesis in ApcMin mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int J Exp Pathol. 90: 558–574.
  • Luo F, Poulogiannis G, Ye H, Hamoudi R, Arends MJ (2011a). Synergism between K-rasVal12 and mutant Apc accelerates murine large intestinal tumourigenesis. Oncol Rep. 26: 125–133.
  • Luo F, Poulogiannis G, Ye H, Hamoudi R, Zhang W, Dong G, Arends MJ (2011b). Mutant K-ras promotes carcinogen-induced murine colorectal tumourigenesis, but does not alter tumour chromosome stability. J Pathol. 223: 390–399.
  • Luo F, Ye H, Hamoudi R, Dong G, Zhang W, Patek CE, Poulogiannis G, Arends MJ (2010). K-ras exon 4A has a tumour suppressor effect on carcinogen-induced murine colonic adenoma formation. J Pathol. 220: 542–550.
  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK, Elledge SJ (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137: 835–848.
  • Maher J, Baker DA, Manning M, Dibb NJ, Roberts IA (1995). Evidence for cell-specific differences in transformation by N-, H- and K-ras. Oncogene. 11: 1639–1647.
  • Malumbres M, Barbacid M (2003). RAS oncogenes: the first 30 years. Nat Rev Canc. 3: 459–465.
  • McCormick F (1999). Signalling networks that cause cancer. Trends Cell Biol. 9: M53–M56.
  • Mita H, Toyota M, Aoki F, Akashi H, Maruyama R, Sasaki Y, Suzuki H, Idogawa M, Kashima L, Yanagihara K, Fujita M, Hosokawa M, Kusano M, Sabau SV, Tatsumi H, Imai K, Shinomura Y, Tokino T (2009). A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth. BMC Canc. 9: 198.
  • Muslin AJ (2008). MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond). 115: 203–218.
  • Naguib A, Wilson CH, Adams DJ, Arends MJ (2011). Activation of K-RAS by co-mutation of codons 19 and 20 is transforming. J Mol Signal. 6: 2.
  • Nakao M, Kawauchi S, Uchiyama T, Adachi J, Ito H, Chochi Y, Furuya T, Oga A, Sasaki K (2011). DNA copy number aberrations associated with the clinicopathological features of colorectal cancers: Identification of genomic biomarkers by array-based comparative genomic hybridization. Oncol Rep. 25: 1603–1611.
  • Ohnishi T, Tomita N, Monden T, Ohue M, Yana I, Takami K, Yamamoto H, Yagyu T, Kikkawa N, Shimano T, Monden M (1997). A detailed analysis of the role of K-ras gene mutation in the progression of colorectal adenoma. Br J Canc. 75: 341–347.
  • Orecchia R, Infusini E, Sciutto A, Rapallo A, Di Vinci A, Nigro S, Geido E, Giaretti W (2000). Ki-ras activation in vitro affects G1 and G2M cell-cycle transit times and apoptosis. J Pathol. 190: 423–429.
  • Osterop AP, Medema RH, Bos JL, vd Zon GC, Moller DE, Flier JS, Moller W, Maassen JA (1992). Relation between the insulin receptor number in cells, autophosphorylation and insulin-stimulated Ras.GTP formation. J Biol Chem. 267: 14647–14653.
  • Otori K, Oda Y, Sugiyama K, Hasebe T, Mukai K, Fujii T, Tajiri H, Yoshida S, Fukushima S, Esumi H (1997). High frequency of K-ras mutations in human colorectal hyperplastic polyps. Gut. 40: 660–663.
  • Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ, Hooper ML, Patek CE (2006). K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res. 25: 259–267.
  • Poulogiannis G, Ichimura K, Hamoudi RA, Luo F, Leung SY, Yuen ST, Harrison DJ, Wyllie AH, Arends MJ (2010). Prognostic relevance of DNA copy number changes in colorectal cancer. J Pathol. 220: 338–347.
  • Pulciani S, Santos E, Lauver AV, Long LK, Robbins KC, Barbacid M (1982). Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. Proc Natl Acad Sci U S A. 79: 2845–2849.
  • Ravingerova T, Barancik M, Strniskova M (2003). Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem. 247: 127–138.
  • Ray S, Atkuri KR, Deb-Basu D, Adler AS, Chang HY, Herzenberg LA, Felsher DW (2006). MYC can induce DNA breaks in vivo and in vitro independent of reactive oxygen species. Canc Res. 66: 6598–6605.
  • Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, Stambrook PJ, Fagin JA (2000). The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene. 19: 3948–3954.
  • Sansom OJ, Meniel V, Wilkins JA, Cole AM, Oien KA, Marsh V, Jamieson TJ, Guerra C, Ashton GH, Barbacid M, Clarke AR (2006). Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo. Proc Natl Acad Sci (USA). 103: 14122–14127.
  • Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC (2011). Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal. 4: ra13.
  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, Dohner K, Bullinger L, Sandy P, Boehm JS, Root DE, Jacks T, Hahn WC, Gilliland DG (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 137: 821–834.
  • Segal M, Clarke DJ (2001). The Ras pathway and spindle assembly collide? Bioessays. 23: 307–310.
  • Shih C, Weinberg RA (1982). Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell. 29: 161–169.
  • Shimizu K, Goldfarb M, Perucho M, Wigler M (1983). Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci U S A. 80: 383–387.
  • Shin KH, Bae SD, Hong HS, Kim RH, Kang MK, Park NH (2011). miR-181a shows tumor suppressive effect against oral squamous cell carcinoma cells by downregulating K-ras. Biochem Biophys Res Comm. 404: 896–902.
  • Shivapurkar N, Huang L, Ruggeri B, Swalsky PA, Bakker A, Finkelstein S, Frost A, Silverberg S (1997). K-ras and p53 mutations in aberrant crypt foci and colonic tumors from colon cancer patients. Canc Lett. 115: 39–46.
  • Sullivan KM, Kozuch PS (2011). Impact of KRAS mutations on management of colorectal carcinoma. Patholog Res Int. 2011: xs219–309.
  • Sweet-Cordero A, Mukherjee S, Subramanian A, You H, Roix JJ, Ladd-Acosta C, Mesirov J, Golub TR, Jacks T (2005). An oncogenic KRAS2 expression signature identified by cross-species gene-expression analysis. Nat Genet. 37: 48–55.
  • Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y (2002). E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell. 9:1017–1029.
  • Tsang WP, Kwok TT (2009). The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis. 30: 953–959.
  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, Wahl GM (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell. 9: 1031–1044.
  • Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S, Root DE, Huff V, Hahn WC, Sweet-Cordero EA (2010). Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 120: 3940–3952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.