795
Views
8
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Intercellular calcium waves in primary cultured rat mesenteric smooth muscle cells are mediated by Connexin43

, , , , &
Pages 25-37 | Received 31 May 2011, Accepted 18 Apr 2012, Published online: 29 May 2012

References

  • Alonso F, Boittin FX, Beny JL, Haefliger JA (2010a). Loss of connexin40 is associated with decreased endothelium-dependent relaxations and eNOS levels in the mouse aorta. Am J Physiol Heart Circ Physiol. 299: H1365–H1373.
  • Alonso F, Krattinger N, Mazzolai L, Simon A, Waeber G, Meda P, Haefliger JA (2010b). An angiotensin II- and NF-kappaB-dependent mechanism increases connexin 43 in murine arteries targeted by renin-dependent hypertension. Cardiovasc Res. 87: 166–176.
  • Berridge MJ (2008). Smooth muscle cell calcium activation mechanisms. J Physiol. 586: 5047–5061.
  • Blatter LA, Wier WG (1992). Agonist-induced [Ca2 +]i waves and Ca(2 +)-induced Ca2 + release in mammalian vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 263: H576–H586.
  • Burt JM, Fletcher AM, Steele TD, Wu Y, Cottrell GT, Kurjiaka DT (2001). Alteration of Cx43:Cx40 expression ratio in A7r5 cells. Am J Physiol Cell Physiol. 280: C500–C508.
  • Byron KL (1996). Vasopressin stimulates Ca2 + spiking activity in A7r5 vascular smooth muscle cells via activation of phospholipase A2. Circ Res. 78: 813–820.
  • Charles AC, Naus CC, Zhu D, Kidder GM, Dirksen ER, Sanderson MJ (1992). Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol. 118: 195–201.
  • Chaytor AT, Evans WH, Griffith TM (1997). Peptides homologous to extracellular loop motifs of connexin 43 reversibly abolish rhythmic contractile activity in rabbit arteries. J Physiol. 503(Pt 1): 99–110.
  • Christ GJ, Moreno AP, Melman A, Spray DC (1992). Gap junction-mediated intercellular diffusion of Ca2 + in cultured human corporal smooth muscle cells. Am J Physiol. 263: C373–C383.
  • Coleman HA, Tare M, Parkington HC (2001). K + currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels. J Physiol. 531: 359–373.
  • Cottrell GT, Wu Y, Burt JM (2001). Functional characteristics of heteromeric Cx40–Cx43 gap junction channel formation. Cell Commun Adhes. 8: 193–197.
  • Cottrell GT, Wu Y, Burt JM (2002). Cx40 and Cx43 expression ratio influences heteromeric/heterotypic gap junction channel properties. Am J Physiol Cell Physiol. 282: C1469–C1482.
  • de Wit C, Roos F, Bolz SS, Pohl U (2003). Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genom. 13: 169–177.
  • Evans WH, De Vuyst E, Leybaert L (2006). The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J. 397: 1–14.
  • Follonier L, Schaub S, Meister JJ, Hinz B (2008). Myofibroblast communication is controlled by intercellular mechanical coupling. J Cell Sci. 121: 3305–3316.
  • Formey A, Buscemi L, Boittin FX, Beny JL, Meister JJ (2011). Identification and functional response of interstitial Cajal-like cells from rat mesenteric artery. Cell Tissue Res. 343: 509–519.
  • Goldberg GS, Valiunas V, Brink PR (2004). Selective permeability of gap junction channels. Biochim Biophys Acta. 1662: 96–101.
  • Gomes P, Srinivas SP, Van Driessche W, Vereecke J, Himpens B (2005). ATP release through connexin hemichannels in corneal endothelial cells. Investig Ophthalmol Vis Sci. 46: 1208–1218.
  • Gustafsson F, Mikkelsen HB, Arensbak B, Thuneberg L, Neve S, Jensen LJ, Holstein-Rathlou NH (2003). Expression of connexin 37, 40 and 43 in rat mesenteric arterioles and resistance arteries. Histochem Cell Biol. 119: 139–148.
  • Halidi N, Boittin FX, Beny JL, Meister JJ (2011). Propagation of fast and slow intercellular Ca(2 +) waves in primary cultured arterial smooth muscle cells. Cell calcium. 50: 459–467.
  • Harris AL (2007). Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol. 94: 120–143.
  • Heyman NS, Kurjiaka DT, Ek Vitorin JF, Burt JM (2009). Regulation of gap junctional charge selectivity in cells coexpressing connexin 40 and connexin 43. Am J Physiol Heart Circ Physiol. 297: H450–H459.
  • Kanagaratnam P, Rothery S, Patel P, Severs NJ, Peters NS (2002). Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol. 39: 116–123.
  • Kanaporis G, Mese G, Valiuniene L, White T, Brink P, Valiunas V (2008). Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides. J Gen Physiol. 131: 293–305.
  • Moore LK, Beyer EC, Burt JM (1991). Characterization of gap junction channels in A7r5 vascular smooth muscle cells. Am J Physiol Cell Physiol. 260: C975–C981.
  • Oishi H, Budel S, Schuster A, Stergiopulos N, Meister JJ, Beny JL (2001). Cytosolic-free calcium in smooth-muscle and endothelial cells in an intact arterial wall from rat mesenteric artery in vitro. Cell Calcium. 30: 261–267.
  • Paemeleire K, Martin PE, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, Tuft RA, Evans WH, Sanderson MJ (2000). Intercellular calcium waves in HeLa cells expressing GFP-labeled connexin 43, 32, or 26. Mol Biol Cell. 11:1815–1827.
  • Rüegg UT, Doyle VM, Zuber JF, Hof RP (1985). A smooth muscle cell line suitable for the study of voltage sensitive calcium channels. Biochem Biophys Res Commun. 130: 447–453.
  • Sáez JC, Berthoud VM, Brañes MC, Martínez AD, Beyer EC (2003). Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 83: 1359–1400.
  • Schuster A, Oishi H, Bény JL, Stergiopulos N, Meister JJ (2001). Simultaneous arterial calcium dynamics and diameter measurements: application to myoendothelial communication. Am J Physiol Heart Circ Physiol. 280: H1088–H1096.
  • Segal SS, Damon DN, Duling BR (1989). Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol Heart Circ Physiol. 256: H832–H837.
  • Seppey D, Sauser R, Koenigsberger M, Bény JL, Meister JJ (2010). Intercellular calcium waves are associated with the propagation of vasomotion along arterial strips. Am J Physiol Heart Circ Physiol. 298: H488–H496.
  • Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius KJ, Jarvius J, Wester K, Hydbring P, Bahram F, Larsson LG, Landegren U (2006). Direct observation of individual endogenous protein complexes in situ by proximity ligation. Br J Pharmacol. 3: 995–1000.
  • Stout CE, Costantin JL, Naus CC, Charles AC (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem. 277: 10482–10488.
  • Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI (2007). Propagated endothelial Ca2 + waves and arteriolar dilation in vivo: measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res. 101: 1300–1309.
  • Tare M, Coleman HA, Parkington HC (2002). Glycyrrhetinic derivatives inhibit hyperpolarization in endothelial cells of guinea pig and rat arteries. Am J Physiol Heart Circ Physiol. 282: H335–H341.
  • Toma I, Bansal E, Meer EJ, Kang JJ, Vargas SL, Peti-Peterdi J (2008). Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. 294: R1769–R1776.
  • Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998). Intercellular calcium signaling via gap junction in connexin-43-transfected cells. J Biol Chem. 273: 1519–1528.
  • Van Kempen MJA, Jongsma HJ (1999). Distribution of connexin37, connexin40 and connexin43 in the aorta and coronary artery of several mammals. Histochem Cell Biol. 112: 479–486.
  • Vessey JP, Lalonde MR, Mizan HA, Welch NC, Kelly ME, Barnes S (2004). Carbenoxolone inhibition of voltage-gated Ca channels and synaptic transmission in the retina. J Neurophysiol. 92: 1252–1256.
  • Yamamoto Y, Klemm MF, Edwards FR, Suzuki H (2001). Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles. J Physiol. 535: 181–195.
  • Yashiro Y, Duling BR (2003). Participation of intracellular Ca2 + stores in arteriolar conducted responses. Am J Physiol Heart Circ Physiol. 285: H65–H73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.