2,435
Views
37
CrossRef citations to date
0
Altmetric
KIEV MEETING: Poster Presentations

Cancer immunotherapeutic potential of novel small molecule TLR7 and TLR8 agonists

, , &
Pages 257-265 | Received 22 Jun 2009, Accepted 25 Aug 2009, Published online: 22 Oct 2009

References

  • Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R. A. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732–738.
  • Baenziger, S., Heikenwalder, M., Johansen, P., Schlaepfer, E., Hofer, U., Miller, R. C., Diemand, S., Honda, K., Kundig, T. M., Aguzzi, A., and Speck, R. F. 2009. Triggering TLR7 in mice induces immune activation and lymphoid system disruption, resembling HIV-mediated pathology. Blood 113:377–388.
  • Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H., and Lipford, G. B. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 98:9237–9242.
  • Bong, A. B., Bonnekoh, B., Franke, I., Schon, M. P., Ulrich, J., and Gollnick, H. 2002. Imiquimod, a topical immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 205:135–138.
  • Carpentier, A., Laigle-Donadey, F., Zohar, S., Capelle, L., Behin, A., Tibi, A., Martin-Duverneuil, N., Sanson, M., Lacomblez, L., Taillibert, S., Puybasset, L., Van Effenterre, R., Delattre, J. Y., and Carpentier, A. F. 2006. Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neurol. Oncol. 8:60–66.
  • Chakrabarty, A., Hillman, G. G., Maughan, R. L., Ali, E., Pontes, J. E., and Haas, G. P. 1994. Radiation therapy enhances the therapeutic effect of immunotherapy on pulmonary metastases in a murine renal adenocarcinoma model. In Vivo 8:25–31.
  • Dendorfer, M., Oppel, T., Wollenberg, A., and Prinz, J. C. 2003. Topical treatment with imiquimod may induce regression of facial keratoacanthoma. Eur. J. Dermatol. 13:80–82.
  • Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and Reise Sousa C. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531.
  • Dumitru, C. D., Antonysamy, M. A., Gorski, K. S., Johnson, D. D., Reddy, L. G., Lutterman, J. L., Piri, M. M., Proksch, J., McGurran, S. M., Egging, E. A., Cochran, F. R., Lipson, K. E., Tomai, M. A., and Gullikson, G. W. 2009. NK1.1+ cells mediate the anti-tumor effects of a dual Toll-like receptor 7/8 agonist in the disseminated B16-F10 melanoma model. Cancer Immunol. Immunother. 58:575–587.
  • Dummer, R., Hauschild, A., Becker, J. C., Grob, J. J., Schadendorf, D., Tebbs, V., Skalsky, J., Kaehler, K. C., Moosbauer, S., Clark, R., Meng, T. C., and Urosevic, M. 2008. An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin. Cancer Res. 14:856–864.
  • Geisse, J., Caro, I., Lindholm, J., Golitz, L., Stampone, P., and Owens, M. 2004. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: Results from two Phase III, randomized, vehicle-controlled studies. J. Am. Acad. Dermatol. 50:722–733.
  • Goldstein, D., Hertzog, P., Tomkinson, E., Couldwell, D., McCarville, S., Parrish, S., Cunningham, P., Newell, M., Owens, M., and Cooper, D. A. 1998. Administration of imiquimod, an interferon inducer, in asymptomatic human immunodeficiency virus-infected persons to determine safety and biologic response modification. J. Infect. Dis. 178:858–861.
  • Gorden, K. B., Gorski, K. S., Gibson, S. J., Kedl, R. M., Kieper, W. C., Qiu, X., Tomai, M. A., Alkan, S. S., and Vasilakos, J. P. 2005. Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J. Immunol. 174:1259–1268.
  • Gorski, K. S., Waller, E. L., Bjornton-Severson, J., Hanten, J. A., Riter, C. L., Kieper, W. C., Gorden, K. B., Miller, J. S., Vasilakos, J. P., Tomai, M. A., and Alkan, S. S. 2006. Distinct indirect pathways govern human NK-cell activation by TLR-7 and TLR-8 agonists. Int. Immunol. 18:1115–1126.
  • Gunzer, M., Riemann, H., Basoglu, Y., Hillmer, A., Weishaupt, C., Balkow, S., Benninghoff, B., Ernst, B., Steinert, M., Scholzen, T., Sunderkotter, C., and Grabbe, S. 2005. Systemic administration of a TLR7 ligand leads to transient immune incompetence due to peripheral-blood leukocyte depletion. Blood 106:2424–2432.
  • Hadley, G., Derry, S., and Moore, R. A. 2006. Imiquimod for actinic keratosis: Systematic review and meta-analysis. J. Invest. Dermatol. 126:1251–1255.
  • Harrison, L.I., Astry, C., Kumar, S., and Yunis, C. 2007. Pharmacokinetics of 852A, an imidazoquinoline Toll-like receptor 7-specific agonist, following intravenous, subcutaneous, and oral administrations in humans. J. Clin. Pharmacol. 47:962–969.
  • Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103.
  • Heckelsmiller, K., Rall, K., Beck, S., Schlamp, A., Seiderer, J., Jahrsdorfer, B., Krug, A., Rothenfusser, S., Endres, S., and Hartmann, G. 2002. Peritumoral CpG DNA elicits a coordinated response of CD8 T-cells and innate effectors to cure established tumors in a murine colon carcinoma model. J. Immunol. 169:3892–3899.
  • Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K., Akira, S., Wagner, H., and Bauer, S. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33:2987–2997.
  • Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529.
  • Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196–200.
  • Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745.
  • Hillman, G. G. 2002. Experimental animal models for renal cell carcinoma. In: Tumor Models in Cancer Research (Teicher, B. A., Ed.), Heidelberg: Springer, pp. 494–498.
  • Honda, K., Yanai, H., Mizutani, T., Negishi, H., Shimada, N., Suzuki, N., Ohba, Y., Takaoka, A., Yeh, W.C., and Taniguchi, T. 2004. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101:15416–15421.
  • Hornung, V., Rothenfusser, S., Britsch, S., Krug, A., Jahrsdorfer, B., Giese, T., Endres, S., and Hartmann, G. 2002. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J. Immunol. 168:4531–4537.
  • Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., and Akira, S. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J. Immunol. 162:3749–3752.
  • Ito, T., Amakawa, R., Kaisho, T., Hemmi, H., Tajima, K., Uehira, K., Ozaki, Y., Tomizawa, H., Akira, S., and Fukuhara, S. 2002. Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195:1507–1512.
  • Kawai, T., Sato, S., Ishii, K.J., Coban, C., Hemmi, H., Yamamoto, M., Terai, K., Matsuda, M., Inoue, J., Uematsu, S., Takeuchi, O., and Akira, S. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:1061–1068.
  • Kawarada, Y., Ganss, R., Garbi, N., Sacher, T., Arnold, B., and Hammerling, G. J. 2001. NK- and CD8+ T-cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J. Immunol. 167:5247–5253.
  • Klinman, D. M., Takeshita, F., Gursel, I., Leifer, C., Ishii, K. J., Verthelyi, D., and Gursel, M. 2002. CpG DNA: Recognition by and activation of monocytes. Microbes Infect. 4:897–901.
  • Korman, N., Moy, R., Ling, M., Matheson, R., Smith, S., McKane, S., and Lee, J. H. 2005. Dosing with 5% imiquimod cream 3 times per week for the treatment of actinic keratosis: Results of two Phase 3, randomized, double-blind, parallel-group, vehicle-controlled trials. Arch. Dermatol. 141:467–473.
  • Krieg, A. M., Efler, S. M., Wittpoth, M., Al Adhami, M. J., and Davis, H. L. 2004. Induction of systemic TH1-like innate immunity in normal volunteers following subcutaneous but not intravenous administration of CPG 7909, a synthetic B-class CpG oligodeoxynucleotide TLR9 agonist. J. Immunother. 27:460–471.
  • Krieg, A. M. 2007. Development of TLR9 agonists for cancer therapy. J. Clin. Invest. 117:1184–1194.
  • Larangé, A., Antonios, D., Pallardy, M., and Kerdine-Romer, S. 2009. TLR7 and TLR8 agonists trigger different signaling pathways for human dendritic cell maturation. J. Leukocyte Biol. 85:673–683.
  • Lee, J., Chuang, T. H., Redecke, V., She, L., Pitha, P. M., Carson, D. A., Raz, E., and Cottam, H. B. 2003. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: Activation of Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 100:6646–6651.
  • Link, B. K., Ballas, Z. K., Weisdorf, D., Wooldridge, J. E., Bossler, A. D., Shannon, M., Rasmussen, W. L., Krieg, A. M., and Weiner, G. J. 2006. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother. 29:558–568.
  • Liu, C., Lou, Y., Lizee, G., Qin, H., Liu, S., Rabinovich, B., Kim, G.J., Wang, Y. H., Ye, Y., Sikora, A. G., Overwijk, W. W., Liu, Y. J., Wang, G., and Hwu, P. 2008. Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T-cell cross-priming and tumor regression in mice. J. Clin. Invest. 118:1165–1175.
  • Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A., and Flavell, R. A. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:5598–5603.
  • Manegold, C., Gravenor, D., Woytowitz, D., Mezger, J., Hirsh, V., Albert, G., Al-Adhami, M., Readett, D., Krieg, A. M., and Leichman, C. G. 2008. Randomized Phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26:3979–3986.
  • Nagase, H., Okugawa, S., Ota, Y., Yamaguchi, M., Tomizawa, H., Matsushima, K., Ohta, K., Yamamoto, K., and Hirai, K. (2003). Expression and function of Toll-like receptors in eosinophils: Activation by Toll-like receptor 7 ligand. J. Immunol. 171:3977–3982.
  • O’Neill, L. A. 2006. How Toll-like receptors signal: What we know and what we don’t know. Curr. Opin. Immunol. 18:3–9.
  • Pashenkov, M., Goess, G., Wagner, C., Hormann, M., Jandl, T., Moser, A., Britten, C. M., Smolle, J., Koller, S., Mauch, C., Tantcheva-Poor, I., Grabbe, S., Loquai, C., Esser, S., Franckson, T., Schneeberger, A., Haarmann, C., Krieg, A. M., Stingl, G., and Wagner, S. N. 2006. Phase II trial of a Toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J. Clin. Oncol. 24:5716–5724.
  • Pestka, S., Krause, C. D., and Walter, M. R. 2004. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202:8–32.
  • Pope, B. L., Sigindere, J., Chourmouzis, E., MacIntyre, P., and Goodman, M. G. 1994. 7-Allyl-8-oxoguanosine (loxoribine) inhibits the metastasis of B16 melanoma cells and has adjuvant activity in mice immunized with a B16 tumor vaccine. Cancer Immunol. Immunother. 38:83–91.
  • Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., and Malo, D. 1999. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr-4). J. Exp. Med. 189:615–625.
  • Schulze, H. J., Cribier, B., Requena, L., Reifenberger, J., Ferrandiz, C., Garcia Diez, A., Tebbs, V., and McRae, S. 2005. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: Results from a randomized vehicle-controlled Phase III study in Europe. Br. J. Dermatol. 152:939–947.
  • Schwartz, M. J., Liu, H., Hwang, D. H., Kawamoto, H., and Scherr, D. S. 2009. Anti-tumor effects of an imidazoquinoline in renal cell carcinoma. Urology 73:1156–1162.
  • Shevach, E. M. 2005. Immunofluorescence and cell sorting. In: Short Protocols in Immunology (Coligan, J. E., Marguiles, D. H., Shevach, E. M., and Strober, W., Eds.), Hoboken, NJ: John Wiley & Sons, pp. 4-1–4-15.
  • Smits, E. L., Ponsaerts, P., Berneman, Z. N., and Van Tendeloo, V. F. 2008. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875.
  • Sterry, W., Ruzicka, T., Herrera, E., Takwale, A., Bichel, J., Andres, K., Ding, L., and Thissen, M. R. 2002. Imiquimod 5% cream for the treatment of superficial and nodular basal cell carcinoma: Randomized studies comparing low-frequency dosing with and without occlusion. Br. J. Dermatol. 147:1227–1236.
  • Stockfleth, E., Meyer, T., Benninghoff, B., Salasche, S., Papadopoulos, L., Ulrich, C., and Christophers, E. 2002. A randomized, double-blind, vehicle-controlled study to assess 5% imiquimod cream for the treatment of multiple actinic keratoses. Arch. Dermatol. 138:1498–1502.
  • Swann, J. B., and Smyth, M. J. 2007. Immune surveillance of tumors. J. Clin. Invest. 117:1137–1146.
  • Szeimies, R. M., Bichel, J., Ortonne, J. P., Stockfleth, E., Lee, J., and Meng, T. C. 2008. A Phase II dose-ranging study of topical resiquimod to treat actinic keratosis. Br. J. Dermatol. 159:205–210.
  • Szeimies, R. M., Gerritsen, M. J., Gupta, G., Ortonne, J. P., Serresi, S., Bichel, J., Lee, J. H., Fox, T. L., and Alomar, A. 2004. Imiquimod 5% cream for the treatment of actinic keratosis: Results from a Phase III, randomized, double-blind, vehicle-controlled, clinical trial with histology. J. Am. Acad. Dermatol. 51:547–555.
  • Takaoka, A., Yanai, H., Kondo, S., Duncan, G., Negishi, H., Mizutani, T., Kano, S., Honda, K., Ohba, Y., Mak, T. W., and Taniguchi, T. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249.
  • Takeda, K., and Akira, S. 2005. Toll-like receptors in innate immunity. Int. Immunol. 17:1–14.
  • Takeshita, F., Leifer, C. A., Gursel, I., Ishii, K. J., Takeshita, S., Gursel, M., and Klinman, D. M. 2001. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167:3555–3558.
  • Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K., and Akira, S. 2001. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 13:933–940.
  • Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., and Akira, S. 2002. Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169:10–14.
  • Ugurel, S., Wagner, A., Pfohler, C., Tilgen, W., and Reinhold, U. 2002. Topical imiquimod eradicates skin metastases of malignant melanoma but fails to prevent rapid lymphogenous metastatic spread. Br. J. Dermatol. 147:621–624.
  • Vollmer, J., Rankin, R., Hartmann, H., Jurk, M., Samulowitz, U., Wader, T., Janosch, A., Schetter, C., and Krieg, A. M. 2004a. Immunopharmacology of CpG oligodeoxynucleotides and ribavirin. Antimicrob. Agents Chemother. 48:2314–2317.
  • Vollmer, J., Weeratna, R., Payette, P., Jurk, M., Schetter, C., Laucht, M., Wader, T., Tluk, S., Liu, M., Davis, H. L., and Krieg, A. M. 2004b. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur. J. Immunol. 34:251–262.
  • Wang, H., Rayburn, E. R., Wang, W., Kandimalla, E. R., Agrawal, S., and Zhang, R. 2006. Chemotherapy and chemosensitization of non-small cell lung cancer with a novel immunomodulatory oligonucleotide targeting Toll-like receptor 9. Mol. Cancer Ther. 5:1585–1592.
  • Werts, C., Tapping, R. I., Mathison, J. C., Chuang, T. H., Kravchenko, V., Saint Girons, I., Haake, D. A., Godowski, P. J., Hayashi, F., Ozinsky, A., Underhill, D. M., Kirschning, C. J., Wagner, H., Aderem, A., Tobias, P. S., and Ulevitch, R. J. 2001. Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2:346–352.
  • Whitmore, M. M., DeVeer, M. J., Edling, A., Oates, R. K., Simons, B., Lindner, D., and Williams, B. R. 2004. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced anti-tumor activity. Cancer Res. 64:5850–5860.
  • Wiltrout, R. H., Salup, R. R., Twilley, T. A., and Talmadge, J. E. 1985. Immunomodulation of natural killer activity by polyribonucleotides. J. Biol. Resp. Mod. 4:512–517.
  • Yang, Q., Goding, S. R., Hokland, M. E., and Basse, P. H. 2006. Anti-tumor activity of NK cells. Immunol. Res. 36:13–25.
  • Yarovinsky, F., Zhang, D., Andersen, J. F., Bannenberg, G. L., Serhan, C. N., Hayden, M. S., Hieny, S., Sutterwala, F. S., Flavell, R. A., Ghosh, S., and Sher, A. 2005. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308:1626–1629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.