950
Views
15
CrossRef citations to date
0
Altmetric
An Article Based Upon A Presentation at the 3rd International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM), Krakow, Poland, April 2013Research Articles

Modulation of bone morphogenic protein signaling in T-cells for cancer immunotherapy

, &
Pages 319-327 | Received 20 Sep 2013, Accepted 04 Nov 2013, Published online: 19 Dec 2013

References

  • Arden, K. C. 2004. FoxO: Linking new signaling pathways. Mol. Cell 14:416–418
  • Arlen, P. M., Mohebtash, M., Madan, R. A., and Gulley, J. L. 2009. Promising novel immunotherapies and combinations for prostate cancer. Future Oncol. 5:187–196
  • Biggs, M. W., and Eiselein, J. E. 2001. Suppression of immune surveillance in melanoma. Med. Hypotheses 56:648–652
  • Bleul, C. C., and Boehm, T. 2005. BMP signaling is required for normal thymus development. J. Immunol. 175:5213–5221
  • Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193
  • Chen, D., Zhao, M., and Mundy, G. R. 2004. Bone morphogenetic proteins. Growth Factors 22:233–241
  • Curiel, T. J., Coukos, G., Zou, L., et al. 2004. Specific recruitment of regulatory T-cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10:942–949
  • Doak, S. H., Jenkins, S. A., Hurle, R. A., et al. 2007. Bone morphogenic factor gene dosage abnormalities in prostatic intra-epithelial neoplasia and prostate cancer. Cancer Genet. Cytogenet. 176:161–165
  • Engelhard, V. H., Bullock, T. N., Colella, T. A., et al. 2002. Antigens derived from melanocyte differentiation proteins: Self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol. Rev. 188:136–146
  • Fantini, M. C., Becker, C., Monteleone, G., et al. 2004. Cutting edge: TGFβ induces a regulatory phenotype in CD4+CD25− T-cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172:5149–5153
  • Gabrilovich, D. I., Ostrand-Rosenberg, S., and Bronte, V. 2012. Coordinated regulation of myeloid cells by tumors. Nat. Rev. Immunol. 12:253–268
  • Graf, D., Nethisinghe, S., Palmer, D. B., et al. 2002. The developmentally-regulated expression of twisted gastrulation reveals a role for bone morpho-genetic proteins in the control of T-cell development. J. Exp. Med. 196:163–171
  • Gray, A., van de la Luz Garcia-Hernandez, W. M., Kanodia, S., et al. 2009. Prostate cancer immunotherapy yields superior long-term survival in TRAMP mice when administered at an early stage of carcinogenesis prior to the establishment of tumor-associated immunosuppression at later stages. Vaccine 27:G52–G59
  • Guo, X., and Wang, X. F. 2009. Signaling cross-talk between TGFβ/BMP and other pathways. Cell Res. 19:71–88
  • Hager-Theodorides, A. L., Outram, S. V., Shah, D. K., et al. 2002. Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation. J. Immunol. 169:5496–5504
  • Hanahan, D., and Coussens, L. M. 2012. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322
  • He, X. C., Zhang, J., Tong, W. G., et al. 2004. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat. Genet. 36:1117–1121
  • Hinck, A. P. 2012. Structural studies of the TGFβs and their receptors - insights into evolution of the TGFβ superfamily. FEBS Lett. 586:1860–1870
  • Huber, S., Stahl, F. R., Schrader, J., et al. 2009. Activin a promotes the TGFβ-induced conversion of CD4+CD25− T-cells into Foxp3+-induced regulatory T-cells. J. Immunol. 182:4633–4640
  • Itasaki, N., and Hoppler, S. 2010. Cross-talk between Wnt and bone morphogenic protein signaling: A turbulent relationship. Dev. Dyn. 239:16–33
  • Jones, E., Golgher, D., Simon, A. K., et al. 2004. The influence of CD25+ cells on the generation of immunity to tumor cell lines in mice. Novartis Found. Symp. 256:149–152
  • Josefowicz, S. Z., Lu, L. F., and Rudensky, A. Y. 2012. Regulatory T-cells: Mechanisms of differentiation and function. Ann. Rev. Immunol. 30:531–564
  • Kerdiles, Y. M., Beisner, D. R., Tinoco, R., et al. 2009. Foxo1 links homing and survival of naive T-cells by regulating L-selectin, CCR7, and IL-7 receptor. Nat. Immunol. 10:176–184
  • Kuczma, M., Pawlikowska, I., Kopij, M., et al. 2009a. TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T-cells. J. Immunol. 183:3118–3129
  • Kuczma, M., Podolsky, R., Garge, N., et al. 2009b. Foxp3-deficient regulatory T-cells do not revert into conventional effector CD4+ T-cells but constitute a unique cell subset. J. Immunol. 183:3731–3741
  • Lee, P. P., Fitzpatrick, D. R., Beard, C., et al. 2001. A critical role for Dnmt1 and DNA methylation in T-cell development, function, and survival. Immunity 15:763–774
  • Licona-Limon, P., and Soldevila, G. 2007. Role of TGFβ superfamily during T-cell development: New insights. Immunol. Lett. 109:1–12
  • Lu, L., Ma, J., Wang, X., et al. 2010. Synergistic effect of TGFβ superfamily members on the induction of Foxp3+ Treg. Eur. J. Immunol. 40:142–152
  • Ma, Y., Shurin, G. V., Gutkin, D. W., and Shurin, M. R. 2012. Tumor-associated regulatory dendritic cells. Semin. Cancer Biol. 22:298–306
  • Marie, J. C., Letterio, J. J., Gavin, M., and Rudensky, A. Y. 2005. TGFβ1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T-cells. J. Exp. Med. 201:1061–1067
  • Mishina, Y., Hanks, M. C., Miura, S., et al. 2002. Generation of Bmpr/Alk3 conditional knockout mice. Genesis 32:69–72
  • Muranski, P., and Restifo, N. P. 2009. Adoptive immunotherapy of cancer using CD4+ T-cells. Curr. Opin. Immunol. 21:200–208
  • Nishikawa, H., Jager, E., Ritter, G., et al. 2005. CD4+CD25+ regulatory T-cells control induction of antigen-specific CD4+ helper T-cell responses in cancer patients. Blood 106:1008–1011
  • Overwijk, W. W., Lee, D. S., Surman, D. R., et al. 1999. Vaccination with a recombinant vaccinia virus encoding a “self” antigen induces autoimmune vitiligo and tumor cell destruction in mice: Requirement for CD4+ T-lymphocytes. Proc. Natl. Acad. Sci. USA. 96:2982–2987
  • Pardoll, D. M. 2012. Immunology beats cancer: A blueprint for successful translation. Nat. Immunol. 13:1129–1132
  • Poorgholi, B. M., Krause, C., Guzman, A., and Knaus, P. 2012. Comprehensive analysis of TGFβ and BMP receptor interactomes. Eur. J. Cell Biol. 91:287–293
  • Quezada, S. A., Simpson, T. R., Peggs, K. S., et al. 2010. Tumor-reactive CD4+ T-cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207:637–650
  • Rothhammer, T., Poser, I., Soncin, F., et al. 2005. Bone morphogenic proteins are over-expressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 65:448–456
  • Sakaguchi, S., Sakaguchi, N., Shimizu, J., et al. 2001. Immunologic tolerance maintained by CD25+CD4+ regulatory T-cells: Their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182:18–32
  • Senta, H., Park, H., Bergeron, E., et al. 2009. Cell responses to bone morphogenetic proteins and peptides derived from them: Biomedical applications and limitations. Cytokine Growth Factor Rev. 20:213–222
  • Shola, D. T., Wang, H., Wahdan-Alaswad, R., and Danielpour, D. 2012. Hic-5 controls BMP4 responses in prostate cancer cells through interacting with Smads 1, 5 and 8. Oncogene 31:2480–2490
  • Sivertsen, E. A., Huse, K., Hystad, M. E., et al. 2007. Inhibitory effects and target genes of bone morphogenetic protein 6 in Jurkat TAg cells. Eur. J. Immunol. 37:2937–2948
  • Smyth, G. K. 2004. Linear models and Empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3:Article3
  • Tanaka, H., Tanaka, J., Kjaergaard, J., and Shu, S. 2002. Depletion of CD4+CD25+ regulatory cells augments the generation of specific immune T-cells in tumor-draining lymph nodes. J. Immunother. 25:207–217
  • Tian, Q., He, X. C., Hood, L., and Li, L. 2005. Bridging the BMP and Wnt pathways by PI3 kinase/Akt and 14-3-3zeta. Cell Cycle 4:215–216
  • Tone, Y., Furuuchi, K., Kojima, Y., et al. 2008. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9:194–202
  • Topalian, S. L., Drake, C. G., and Pardoll, D. M. 2012. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24:207–212
  • Vesely, M. D., Kershaw, M. H., Schreiber, R. D., and Smyth, M. J. 2011. Natural innate and adaptive immunity to cancer. Ann. Rev. Immunol. 29:235–271
  • Viguier, M., Lemaitre, F., Verola, O., et al. 2004. Foxp3 expressing CD4+CD25high regulatory T-cells are over-represented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T-cells. J. Immunol. 173:1444–1453
  • Yoshioka, Y., Ono, M., Osaki, M., et al. 2012. Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differen-tiation. Eur. J. Immunol. 42:749–759
  • Zheng, Y., Josefowicz, S., Chaudhry, A., et al. 2010. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812
  • Zou, W. 2006. Regulatory T-cells, tumor immunity, and immunotherapy. Nat. Rev. Immunol. 6:295–307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.