2,128
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Breaking immunotolerance of tumors: A new perspective for dendritic cell therapy

&
Pages 311-318 | Received 01 Oct 2013, Accepted 08 Nov 2013, Published online: 04 Feb 2014

References

  • Abdalla, A. O., Kokhaei, P., Hansson, L., et al. 2008. Idiotype vaccination in patients with myeloma reduced circulating myeloma cells (CMC). Ann. Oncol. 19:1172–1179
  • Albert, M. L., Sauter, B., and Bhardwaj, N. 1998. Dendritic cells acquire antigen from apoptotic cells and induce Class I-restricted CTLs. Nature 392:86–89
  • Alfaro, C., Perez-Gracia, J. L., Suarez, N., et al. 2011. Pilot clinical trial of Type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, pegylated IFN, and cyclophosphamide for metastatic cancer patients. J. Immunol. 187:6130–6142
  • Allavena, P., and Mantovani, A. 2012. Immunology in the Clinic Review Series. Focus on cancer: Tumor-associated macrophages - Undisputed stars of inflammatory tumor microenvironment. Clin. Exp. Immunol. 167:195–205
  • Allavena, P., Signorelli, M., Chieppa, M., et al. 2005. Anti-inflammatory properties of the novel anti-tumor agent yondelis (trabectedin): Inhibition of macrophage differentiation and cytokine production. Cancer Res. 65:2964–2971
  • Basu, G. D., Tinder, T. L., Bradley, J. M., et al. 2006. Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: Role of IDO. J. Immunol. 177:2391–2402
  • Berd, D., and Mastrangelo, M. J. 1987. Effect of low-dose cyclophosphamide on the immune system of cancer patients: Reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res. 47:3317–3321
  • Biagi, E., Rousseau, R., Yvon, E., et al. 2005. Responses to human CD40 ligand/human IL-2 autologous cell vaccine in patients with B-cell chronic lymphocytic leukemia. Clin. Cancer Res. 11:6916–6923
  • Bodey, B. 2002. Spontaneous regression of neoplasms: New possibilities for immunotherapy. Expert Opin. Biol. Ther. 2:459–476
  • Bose, A., Taylor, J. L., Alber, S., et al. 2010. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int. J. Cancer. 129:2158–2170
  • Chen, J., Yao, Y., Gong, C., et al. 2011. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19:541–555
  • Chu, C. S., Boyer, J., Schullery, D. S., et al. 2012. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remission. Cancer Immunol. Immunother. 61:629–641
  • Curiel, T. J., Coukos, G., Zou, L., et al. 2004. Specific recruitment of regulatory T-cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10:942–949
  • Dannull, J., Su, Z., Rizzieri, D., et al. 2005. Enhancement of vaccine-mediated anti-tumor immunity in cancer patients after depletion of regulatory T-cells. J. Clin. Invest. 115:3623–3633
  • del Giudice, I., Chiaretti, S., Tavolaro, S., et al. 2009. Spontaneous regression of chronic lymphocytic leukemia: Clinical and biologic features of 9 cases. Blood 114:638–646
  • Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., et al. 2009. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58:49–59
  • Dietl, J., Engel, J. B., and Wischhusen, J. 2007. The role of regulatory T-cells in ovarian cancer. Int. J. Gynecol. Cancer 17:764–770
  • Dighe, A. S., Richards, E., Old, L. J., and Schreiber, R. D. 1994. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFNγ receptors. Immunity 6:447–456
  • Duluc, D., Corvaisier, M., Blanchard, S., et al. 2009. IFNγ reverses the immunosuppressive and pro-tumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer 125:367–373
  • Ellebaek, E., Engell-Noerregaard, L., Iversen, T. Z., et al. 2012. Metastatic melanoma patients treated with dendritic cell vaccination, IL-2, and metronomic cyclophosphamide: Results from a Phase II trial. Cancer Immunol. Immunother. 61:1791–1804
  • Fernández, A., Mesa, C., Marigo, I., et al. 2011. Inhibition of tumor-induced myeloid-derived suppressor cell function by a nanoparticulated adjuvant. J. Immunol. 186:264–274
  • Fields, R. C., Shimizu, K., and Mule, J. J. 1998. Murine dendritic cells pulsed with whole-tumor lysates mediate potent anti-tumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95:9482–9487
  • Gabitass, R. F., Annels, N. E., Stocken, D. D., et al. 2011. Elevated myeloid-derived suppressor cells in pancreatic, esophageal, and gastric cancer are an independent prognostic factor and are associated with significant elevation of the TH2 cytokine IL-13. Cancer Immunol. Immunother. 60:1419–1430
  • Galluzzi, L., Senovilla, L., Vacchelli, E., et al. 2012. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 1:1111–1134
  • Gershon, R. K., Lance, E. M., and Kondo, K. 1974. Immunoregulatory role of spleen-localizing thymocytes. J. Immunol. 112:546–554
  • Godin-Ethier, J., Hanafi, L. A., Piccirillo, C. A., and Lapointe, R. 2011. Indoleamine 2,3-dioxy-genase expression in human cancers: Clinical and immunologic perspectives. Clin. Cancer Res. 17:6985–6991
  • Greten, T. F., Ormandy, L. A., Fikuart, A., et al. 2010. Low-dose cyclophosphamide treatment impairs regulatory T-cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J. Immunother. 33:211–218
  • Harden, J. L., and Egilmez, N. K. 2012. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol. Invest. 41:738–764
  • He, L., Feng, H., Raymond, A., et al. 2001. Dendritic-cell-peptide immunization provides immunoprotection against bcr-abl-positive leukemia in mice. Cancer Immunol. Immunother. 50:31–40
  • Hegde, U., Chhabra, A., Chattopadhyay, S., et al. 2008. Presence of low dose of fludarabine in cultures blocks regulatory T-cell expansion and maintains tumor-specific cytotoxic T-lymphocyte activity generated with peripheral blood lymphocytes. Pathobiology 75:200–208
  • Hirooka, Y., Itoh, A., Kawashima, H., et al. 2009. A combination therapy of gemcitabine with immunotherapy for patients with inoperable locally advanced pancreatic cancer. Pancreas 38:e69–74
  • Hoffmann, T. K., Meidenbauer, N., Dworacki, G., et al. 2000. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res. 60:3542–3549
  • Hsu, F. J., Benike, C., Fagnoni, F., et al. 1996. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2:52–58
  • Huang, A., Zhang, B., Wang, B., et al. 2013. Increased CD14+/HLA-DR-/low myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients. Cancer Immunol. Immunother. 62:1439–1451
  • Hus, I., Roliński, J., Tabarkiewicz, J., et al. 2005. Allogeneic dendritic cells pulsed with tumor lysates or apoptotic bodies as immunotherapy for patients with early-stage B-cell chronic lymphocytic leukemia. Leukemia 19:1621–1627
  • Hus, I., Schmitt, M., Tabarkiewicz, J., et al. 2008. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T-cells as well as CD4+CD25+FoxP3+ regulatory T-cells toward an anti-leukemia response. Leukemia 22:1007–1017
  • Ichihara, F., Kono, K., Takahashi, A., et al. 2003. Increased populations of regulatory T-cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res. 9:4404–4408
  • Inaba, T., Ino, K., Kajiyama, H., et al. 2009. Role of the immunosuppressive enzyme indoleamine 2,3-dioxygenase in the progression of ovarian carcinoma. Gynecol. Oncol. 115:185–192
  • Ino, K., Yamamoto, E., Shibata, K., et al. 2008. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: Its association with disease progression and survival. Clin. Cancer Res. 14:2310–2317
  • Jacobs, J. F., Punt, C. J., Lesterhuis, W. J., et al. 2010. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: A Phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16:5067–5078
  • Jagadeesh, D., Woda, B. A., Draper, J., and Evens, A. M. 2012. Post transplant lymphoproliferative disorders: Risk, classification, and therapeutic recommendations. Curr. Treat. Options Oncol. 13:122–136
  • Javia, L. R., and Rosenberg, S. A. 2003. CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens. J. Immunother. 26:85–93
  • Kantoff, P. W., Higano, C. S., Shore, N. D., and the IMPACT Study Investigators. 2010. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Engl. J. Med. 363:411–422
  • Kennedy, B. C., Showers, C. R., Anderson, D. E., et al. 2013. Tumor-associated macrophages in glioma: Friend or foe? J. Oncol. 2013:486912–486922
  • Klebanoff, C. A., Acquavella, N., Yu, Z., and Restifo, N.P. 2011. Therapeutic cancer vaccines: Are we there yet? Immunol. Rev. 239:27–44
  • Ko, J. S., Zea, A. H., Rini, B. I., et al. 2009. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15:2148–2157
  • Kodumudi, K. N., Weber, A., Sarnaik, A. A., and Pilon-Thomas, S. 2012. Blockade of myeloid-derived suppressor cells after induction of lymphopenia improves adoptive T-cell therapy in a murine model of melanoma. J. Immunol. 189:5147–5154
  • Kodumudi, K. N., Woan, K., Gilvary, D. L., et al. 2010. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16:4583–4594
  • Kubica, A. W., and Brewer, J. D. 2012. Melanoma in immunosuppressed patients. Mayo Clin. Proc. 87:991–1003
  • Kugler, A., Stuhler, G., Walden, P., et al. 2000. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 6:332–336
  • Kusmartsev, S., Su, Z., Heiser, A., et al. 2008. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 14:8270–8278
  • Lambert, L. A., Gibson, G. R., Maloney, M., et al. 2001. Intra-nodal immunization with tumor lysate-pulsed dendritic cells enhances protective anti-tumor immunity. Cancer Res. 61:641–646
  • Le, H. K., Graham, L., Cha, E., et al. 2009. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T-cells from tumor-bearing mice. Int. Immunopharmacol. 9:900–909
  • Lee, S. Y., Choi, H. K., Lee, K. J., et al. 2009. The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T-cells. J. Immunother. 32:22–28
  • Lin, C. L., Lo, W. F., Lee, T. H., et al. 2002. Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic cells induces functional CD8+ T-cell immunity and may lead to tumor regression in patients with EBV+ nasopharyngeal carcinoma. Cancer Res. 62:6952–6958
  • Linehan, D. C., and Goedegebuure, P. S. 2005. CD25+CD4+ regulatory T-cells in cancer. Immunol Res. 32:155–168
  • Liu, H., Liu, L., Liu, K., et al. 2009. Reduced cytotoxic function of effector CD8+ T-cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression. J. Immunol. 183:1022–1031
  • Liu, J., Zhang, N., Li, Q., et al. 2011. Tumor-associated macrophages recruit CCR6+ regulatory T-cells and promote the develop-ment of colorectal cancer via enhancing CCL20 production in mice. PLoS One 6:e19495
  • Liu, J. Y., Wu, Y., Zhang, X. S., et al. 2007. Single administration of low dose cyclophosphamide augments the anti-tumor effect of dendritic cell vaccine. Cancer Immunol. Immunother. 56:1597–1604
  • Matsushita, N., Pilon-Thomas, S. A., Martin, L. M., and Riker, A. I. 2008. Comparative methodologies of regulatory T-cell depletion in a murine melanoma model. J. Immunol. Meth. 333:167–179
  • McHugh, R. S., Whitters, M. J., Piccirillo, C. A., et al. 2002. CD4+CD25+ immunoregulatory T-cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323
  • Medrek, C., Pontén, F., Jirström, K., and Leandersson, K. 2012. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12:306
  • Mellor, A. L., Baban, B., Chandler, P. R., et al. 2005. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T-cell regulatory functions via IFN Type 1 signaling. J. Immunol. 175:5601–5605
  • Michels, T., Shurin, G. V., Naiditch, H., et al. 2012. Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells in vitro in a TLR4-independent manner. J. Immunotoxicol. 9:292–300
  • Mikyšková, R., Indrová, M., Polláková, V., et al. 2012. Cyclophosphamide-induced myeloid-derived suppressor cell population is immunosuppressive but not identical to myeloid-derived suppressor cells induced by growing TC-1 tumors. J. Immunother. 35:374–384
  • Mirza, N., Fishman, M., Fricke, I., et al. 2006. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66:9299–9307
  • Movassagh, M., Spatz, A., Davoust, J., et al. 2004. Selective accumulation of mature DC-Lamp+ dendritic cells in tumor sites is associated with efficient T-cell-mediated anti-tumor response and control of metastatic dissemination in melanoma. Cancer Res. 64:2192–2198
  • Muthuswamy, R., Urban, J., Lee, J. J., et al. 2008. Ability of mature dendritic cells to interact with regulatory T-cells is imprinted during maturation. Cancer Res. 68:5972–5978
  • Nagaraj, S., Youn, J. I., Weber, H., et al. 2010. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSC and improves immune response in cancer. Clin. Cancer Res. 16:1812–1823
  • Nakanishi, Y., Nakatsuji, M., Seno, H., et al. 2011. COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis 32:1333–1339
  • Ochoa, A. C., Zea, A. H., Hernandez, C., and Rodriguez, P. C. 2007. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin. Cancer Res. 13:721s–726s
  • Ohki, S., Shibata, M., Gonda, K., et al. 2012. Circulating myeloid-derived suppressor cells are increased and correlate to immune suppression, inflammation and hypo-proteinemia in patients with cancer. Oncol. Rep. 28:453–458
  • Oleinika, K., Nibbs, R. J., Graham, G. J., and Fraser, A. R. 2013. Suppression, subversion, and escape: The role of regulatory T-cells in cancer progression. Clin. Exp. Immunol. 171:36–45
  • Oquiñena, S., Guillen-Grima, F., Iñarrairaegui, M., et al. 2009. Spontaneous regression of hepatocellular carcinoma: A systematic review. Eur. J. Gastroenterol Hepatol. 21:254–257
  • Ormandy, L. A., Hillemann, T., Wedemeyer, H., et al. 2005. Increased populations of regulatory T-cells in peripheral blood of patients with hepato-cellular carcinoma. Cancer Res. 65:2457–2464
  • Oshita, C., Takikawa, M., Kume, A., et al. 2012. Dendritic cell-based vaccination in metastatic melanoma patients: Phase II clinical trial. Oncol Rep. 28:1131–1138
  • Ostrand-Rosenberg, S., and Sinha, P. 2009. Myeloid-derived suppressor cells: Linking inflammation and cancer. J. Immunol. 182:4499–4506
  • Ou, X., Cai, S., Liu, P., et al. 2008. Enhancement of dendritic cell-tumor fusion vaccine potency by indoleamine-pyrrole 2,3-dioxygenase inhibitor, 1-MT. J. Cancer Res. Clin. Oncol. 134:525–533
  • Ozao-Choy, J., Ma, G., Kao, J., et al. 2009. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res. 69:2514–2522
  • Pagès, F., Berger, A., Camus, M., et al. 2005. Effector memory T-cells, early metas-tasis, and survival in colorectal cancer. New Engl. J. Med. 353:2654–2666
  • Palucka, A. K., Ueno, H., Connolly, J., et al. 2006. Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity. J. Immunother. 29:545–557
  • Peng, J., Tsang, J. Y., Li, D., et al. 2013. Inhibition of TGFβ signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in tumor-associated macrophages. Cancer Lett. 331:239–249
  • Phan, G. Q., Yang, J. C., Sherry, R. M., et al. 2003. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen-4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100:8372–8377
  • Piña, Y., Boutrid, H., Murray, T. G., et al. 2010. Impact of tumor-associated macrophages in LH(BETA)T(AG) mice on retinal tumor progression: Relation to macro-phage subtype. Invest. Ophthalmol. Vis. Sci. 51:2671–2677
  • Radhakrishnan, S., Cabrera, R., Schenk, E. L., et al. 2008. Reprogrammed FoxP3+ T-regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J. Immunol. 181:3137–3147
  • Radojcic, V., Bezak, K. B., Skarica, M., et al. 2010. Cyclophosphamide resets dendritic cell homeostasis and enhances anti-tumor immunity through effects that extend beyond regulatory T-cell elimination. Cancer Immunol Immunother. 59:137–148
  • Read, S., Malmström, V., and Powrie, F. 2000. Cytotoxic T-lymphocyte-associated antigen-4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp Med. 192:295–302
  • Ridgway, D. 2003. The first 1000 dendritic cell vaccinees. Cancer Invest. 21:873–886
  • Rogers, T. L., and Holen, I. 2011. Tumor macrophages as potential targets of bisphosphonates. J. Transl. Med. 9:177–183
  • Rosenberg, S. A., Restifo, N. P., Yang, J. C., et al. 2008. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat. Rev. Cancer. 8:299–308
  • Saleh, F. H., Crotty, K. A., Hersey, P., and Menzies, S. W. 2001. Primary melanoma tumor regression associated with immune response to tumor-associated antigen melan-A/MART-1. Int. J. Cancer 94:551–557
  • Santambrogio, L., Sato, A. K., Carven, G. J., et al. 1999. Extracellular antigen processing and presentation by immature dendritic cells. Proc. Natl. Acad. Sci. USA 96:15056–15061
  • Schaefer, C., Kim, G. G., Albers, A., et al. 2005. Characteristics of CD4+CD25+ regulatory T-cells in the peripheral circulation of patients with head and neck cancer. Br. J. Cancer 92:913–920
  • Schwartz, R. S. 2001. Immunodeficiency, immunosuppression, and susceptibility to neoplasms. J. Natl. Cancer Inst. Monogr. 28:5–9
  • Serafini, P., Meckel, K., Kelso, M., et al. 2006. Phosphodiesterase-5 inhibition augments endogenous anti-tumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203:2691–2702
  • Sevko, A., Sade-Feldman, M., Kanterman, J., et al. 2013. Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents anti-tumor response in melanoma. J. Invest. Dermatol. 133:1610–1619
  • Shimizu, J., Suda, T., Yoshioka, T., et al. 1989. Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J. Immunol. 142:1053–1059
  • Sica, A., Porta, C., Morlacchi, S., et al. 2012. Origin and functions of tumor-associated myeloid cells (TAMC). Cancer Micro-environ. 5:133–149
  • Smith, C., Chang, M. Y., Parker, K. H., et al. 2012. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2:722–735
  • Steinman, R. M., and Cohn, Z. A. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:1142–1162
  • Suzuki, E., Kapoor, V., Jassar, A. S., et al. 2005. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances anti-tumor immune activity. Clin. Cancer Res. 11:6713–6721
  • Tzai, T. S., Lin, J. S., and Chow, N. H. 1996. Modulation of anti-tumor immunity of tumor-bearing mice with low-dose cyclophosphamide. J. Surg. Res. 65:139–144
  • Ueno, H., Schmitt, N., Klechevsky, E., et al. 2010. Harnessing human dendritic cell subsets for medicine. Immunol. Rev. 234:199–212
  • van Tendeloo, V. F., van de Velde, A., van Driessche, A., et al. 2010. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA 107:13824–13829
  • Veltman, J. D., Lambers, M. E., van Nimwegen, M., et al. 2010. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer 10:464
  • Vincent, J., Mignot, G., Chalmin, F., et al. 2010. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T-cell-dependent anti-tumor immunity. Cancer Res. 70:3052–3061
  • Vonderheide, R. H., Domchek, S. M., Schultze, J. L., et al. 2004. Vaccination of cancer patients against telomerase induces functional anti-tumor CD8+ T-lymphocytes. Clin. Cancer Res. 10:828–839
  • Wada, S., Yoshimura, K., Hipkiss, E. L., et al. 2009. Cyclophosphamide augments anti-tumor immunity: Studies in autochthonous prostate cancer model. Cancer Res. 69:4309–43018
  • Waldron, T. J., Quatromoni, J. G., Karakasheva, T. A., et al. 2013. Myeloid derived suppressor cells: Targets for therapy. Oncoimmunology 2:e24117
  • Wang, D., Saga, Y., Mizukami, H., et al. 2012. Indoleamine-2,3-dioxygenase, an immuno-suppressive enzyme that inhibits natural killer cell function, as a useful target for ovarian cancer therapy. Int. J. Oncol. 40:929–934
  • Wang, J., Saffold, S., Cao, X., et al. 1998. Eliciting T-cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J. Immunol. 161:5516–5524
  • Wansom, D., Light, E., Thomas, D., and the UM Head Neck SPORE Program. 2012. Infiltrating lymphocytes and human papillomavirus-16-associated oropharyngeal cancer. Laryngoscope 122:121–127
  • Watanabe, M. A., Oda, J. M., Amarante, M. K., and Cesar Voltarelli, J. 2010. Regulatory T-cells and breast cancer: Implications for immunopathogenesis. Cancer Metast. Rev. 29:569–579
  • Wersäll, P., and Mellstedt, H. 1995. Increased LAK and T-cell activation in responding renal cell carcinoma patients after low-dose cyclophosphamide, IL-2 and IFNα. Med. Oncol. 12:69–77
  • Wingender, G., Garbi, N., Schumak, B., et al. 2006. Systemic application of CpG-rich DNA suppresses adaptive T-cell immunity via induction of IDO. Eur. J. Immunol. 36:12–20
  • Wobser, M., Voigt, H., Houben, R., et al. 2007. Dendritic cell based anti-tumor vaccination: Impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol. Immunother. 56:1017–1024
  • Woo, E. Y., Chu, C. S., Goletz, T. J., et al. 2001. Regulatory CD4+CD25+ T-cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 61:4766–4772
  • Youn, J. I., and Gabrilovich, D. I. 2010. The biology of myeloid-derived suppressor cells: The blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40:2969–2975
  • Yu, J., Sun, J., Wang, S. E., et al. 2011. Up-regulated expression of indoleamine 2, 3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T-cells in situ and lymph node metastasis. Clin. Dev. Immunol. 2011:469135–469144
  • Zhang, G., Liu, W. L., Zhang, L., et al. 2011. Involvement of indoleamine 2,3-dioxygenase in impairing tumor-infiltrating CD8 T-cell functions in esophageal squamous cell carcinoma. Clin. Dev. Immunol. 2011:384726–384737
  • Zhang, B., Wang, Z., Wu, L., et al. 2013. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8:e57114

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.