1,920
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence?

, , &
Pages 1-15 | Received 16 Sep 2013, Accepted 09 Jan 2014, Published online: 10 Feb 2014

References

  • Adang, L. A., Parsons, C. H., and Kedes, D. H. 2006. Asynchronous progression through the lytic cascade and variations in intracellular viral loads revealed by high-throughput single-cell analysis of Kaposi's Sarcoma-associated herpesvirus infection. J. Virol. 80:10073–10082
  • Amon, W., and Farrell, P. J. 2005. Re-activation of Epstein-Barr virus from latency. Rev. Med. Virol. 15:149–156
  • Amyes, E., Hatton, C., Montamat-Sicotte, D., et al. 2003. Characterization of the CD4+ T-cell response to Epstein-Barr virus during primary and persistent infection. J. Exp. Med. 198:903–911
  • Barton, E., Mandal, P., and Speck, S. H. 2011. Pathogenesis and host control of gammaherpes-viruses: Lessons from the mouse. Annu. Rev. Immunol. 29:351–397
  • Bechtel, J. T., Liang, Y., Hvidding, J., and Ganem, D. 2003. Host range of Kaposi's Sarcoma-associated herpesvirus in cultured cells. J. Virol. 77:6474–6481
  • Ben-Sasson, S. A., and Klein, G. 1981. Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines. Intl. J. Cancer 28:131–135
  • Bihl, F., Narayan, M., Chisholm, J. V. 3rd, et al. 2007. Lytic and latent antigens of the human gammaherpesviruses Kaposi's Sarcoma-associated herpesvirus and Epstein-Barr virus induce T-cell responses with similar functional properties and memory phenotypes. J. Virol. 81:4904–4908
  • Biton, S., Barzilai, A., and Shiloh, Y. 2008. The neurological phenotype of ataxia-telangiectasia: Solving a persistent puzzle. DNA Repair (Amsterdam) 7:1028–1038
  • Blaskovic, D., Stancekova, M., Svobodova, J., and Mistrikova, J. 1980. Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol. 24:468
  • Bornkamm, G. W., and Hammerschmidt, W. 2001. Molecular virology of Epstein-Barr virus. Philos. Trans. Royal Soc. London B 356:437–459
  • Boshoff, C., Schulz, T. F., Kennedy, M. M., et al. 1995. Kaposi's Sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat. Med. 1:1274–1278
  • Boshoff, C., and Weiss, R. 2002. AIDS-related malignancies. Nat. Rev. Cancer 2:373–382
  • Braaten, D. C., Mcclellan, J. S., Messaoudi, I., et al. 2006. Effective control of chronic gamma-herpesvirus infection by unconventional MHC Class Ia-independent CD8 T-Cells. PLoS Pathog. 2:e37
  • Brambilla, G., and Martelli, A. 2009. Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat. Res. 681:209–229
  • Brander, C., O'connor, P., Suscovich, T., et al. 2001. Definition of an optimal cytotoxic T-lymphocyte epitope in the latently expressed Kaposi's Sarcoma-associated herpesvirus kaposin protein. J. Infect. Dis. 184:119–126
  • Bristol-Meyers Squibb. 2007. Summary of Product Characteristics, 2007. http://www.Emea.Europa.Eu/humandocs/pdfs/epar/orencia/h-701-pi-en.pdf
  • Brown, H. J., Song, M. J., Deng, H., et al. 2003. NF-κB inhibits gammaherpesvirus lytic replication. J. Virol. 77:8532–8540
  • Bugelski, P. J., Volk, A., Walker, M. R., et al. 2010. Critical review of preclinical approaches to evaluate the potential of immunosuppressive drugs to influence human neoplasia. Intl. J. Toxicol. 29:435–466
  • Callan, M. F., Fazou, C., Yang, H., et al. 2000. CD8+ T-Cell selection, function, and death in the primary immune response in vivo. J. Clin. Invest. 106:1251–1261
  • Cardin, R. D., Brooks, J. W., Sarawar, S. R., and Doherty, P. C. 1996. Progressive loss of CD8+ T-cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T-cells. J. Exp. Med. 184:863–871
  • Cesarman, E. 2011. Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett. 305:163–174
  • Chang, L. K., and Liu, S. T. 2000. Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucl. Acids Res. 28:3918–3925
  • Chang, Y., Cesarman, E., Pessin, M. S., et al. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s Sarcoma. Science 266:1865–1869
  • Chen, J., Ueda, K., Sakakibara, S., et al. 2001. Activation of latent Kaposi's Sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc. Natl. Acad. Sci. USA 98:4119–4124
  • Chen, M. R. 2011. Epstein-Barr virus, the immune system, and associated diseases. Front. Microbiol. 2:5
  • Chen, Y. B., Rahemtullah, A., and Hochberg, E. 2007. Primary effusion lymphoma. Oncologist 12:569–576
  • Christensen, J. P., Cardin, R. D., Branum, K. C., and Doherty, P. C. 1999. CD4+ T-cell-mediated control of a gamma-herpesvirus in B-cell-deficient mice is mediated by IFNγ. Proc. Natl. Acad. Sci. USA 96:5135–5140
  • Cidlowski, J. A., King, K. L., Evans-Storms, R. B., et al. 1996. The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog. Horm. Res. 51:457–490
  • Conant, M. A. 1987. Hairy leukoplakia. A new disease of the oral mucosa. Arch. Dermatol. 123:585–587
  • Coppola, M. A., Flano, E., Nguyen, P., et al. 1999. Apparent mhc-independent stimulation of CD8+ T-cells in vivo during latent murine gammaherpesvirus infection. J. Immunol. 163:1481-1489
  • Countryman, J. K., Gradoville, L., and Miller, G. 2008. Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein-Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J. Virol. 82:4706–4719
  • Crespo-Leiro, M. G., Alonso-Pulpon, L., Vazquez De Prada, J. A., et al. 2008. Malignancy after heart transplantation: Incidence, prognosis and risk factors. Am. J. Transplant. 8:1031–1039
  • Damania, B. 2004. Oncogenic gamma-herpesviruses: Comparison of viral proteins involved in tumorigenesis. Nat. Rev. Microbiol. 2:656–668
  • Datta, D., Contreras, A. G., Basu, A., et al. 2009. Calcineurin inhibitors activate the proto-oncogene ras and promote pro-tumorigenic signals in renal cancer cells. Cancer Res. 69:8902–8909
  • Domhan, S., Muschal, S., Schwager, C., et al. 2008. Molecular mechanisms of the anti-angio-genic and anti-tumor effects of mycophenolic acid. Mol. Cancer Ther. 7:1656–1668
  • Dupin, N., Fisher, C., Kellam, P., et al. 1999. Distribution of human herpesvirus-8 latently infected cells in Kaposi's Sarcoma, Multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl. Acad. Sci. USA 96:4546–4551
  • Ehtisham, S., Sunil-Chandra, N. P., and Nash, A. A. 1993. Pathogenesis of murine gamma-herpesvirus infection in mice deficient in CD4 and CD8 T-cells. J. Virol. 67:5247–5252
  • Ensoli, B., Sturzl, M., and Monini, P. 2000. Cytokine-mediated growth promotion of Kaposi's Sarcoma and primary effusion lymphoma. Semin. Cancer Biol. 10:367–381
  • Evens, A. M., Roy, R., Sterrenberg, D., et al. 2010. Post-transplantation lymphoproliferative disorders: Diagnosis, prognosis, and current approaches to therapy. Curr. Oncol. Rep. 12:383–394
  • Fan, W., Bubman, D., Chadburn, A., et al. 2005. Distinct subsets of primary effusion lymphoma can be identified based on their cellular gene expression profile and viral association. J. Virol. 79:1244–1251
  • Feng, W. H., Israel, B., Raab-Traub, N., et al. 2002. Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV+ epithelial cell tumors. Cancer Res. 62:1920–1926
  • Flano, E., Husain, S. M., Sample, J. T., et al. 2000. Latent murine gamma-herpesvirus infection is established in activated B-cells, dendritic cells, and macrophages. J. Immunol. 165:1074–1081
  • Flano, E., Kayhan, B., Woodland, D. L., and Blackman, M. A. 2005. Infection of dendritic cells by a gamma2-herpesvirus induces functional modulation. J. Immunol. 175:3225–3234
  • Flano, E., Kim, I. J., Woodland, D. L., and Blackman, M. A. 2002. Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B-cells. J. Exp. Med. 196:1363–1372
  • Flano, E., Woodland, D. L., Blackman, M. A., and Doherty, P. C. 2001. Analysis of virus-specific CD4+ T-cells during long-term gammaherpesvirus infection. J. Virol. 75:7744–7748
  • Forrest, J. C., and Speck, S. H. 2008. Establishment of B-cell lines latently infected with re-activation-competent murine gammaherpesvirus 68 provides evidence for viral alteration of a DNA damage-signaling cascade. J. Virol. 82:7688–7699
  • Freeman, M. L., Lanzer, K. G., Cookenham, T., et al. 2010. Two kinetic patterns of epitope-specific CD8 T-cell responses following murine gammaherpesvirus 68 infection. J. Virol. 84:2881–2892
  • Ganem, D., (Ed.). 2005. Kaposi's Sarcoma-associated herpesvirus. In: Field's Virology. Philadelphia, PA: Lippincott Williams and Wilkins, pp. 2875–2888
  • Ganem, D. 2010. KSHV and the pathogenesis of Kaposi Sarcoma: Listening to human biology and medicine. J. Clin. Invest. 120:939–949
  • Gargano, L. M., Forrest, J. C., and Speck, S. H. 2009. Signaling through toll-like receptors induces murine gammaherpesvirus 68 re-activation in vivo. J. Virol. 83:1474–1482
  • Geiser, V., Cahir-Mcfarland, E., and Kieff, E. 2011. Latent membrane protein 1 is dispensable for Epstein-Barr virus replication in human embryonic kidney 293 cells. PLoS One 6:e22929
  • Giddens, W. E. Jr., Tsai, C. C., Morton, W. R., et al. 1985. Retroperitoneal fibromatosis and acquired immunodeficiency syndrome in macaques. Pathologic observations and transmission studies. Am. J. Pathol. 119:253–263
  • Gottschalk, S., Rooney, C. M., and Heslop, H. E. 2005. Post-transplant lymphoproliferative disorders. Annu. Rev. Med. 56:29–44
  • Gredmark-Russ, S., Cheung, E. J., Isaacson, M. K., et al. 2008. The CD8 T-Cell response against murine gammaherpesvirus 68 is directed toward a broad repertoire of epitopes from both early and late antigens. J. Virol. 82:12205–12212
  • Greenspan, J. S., Greenspan, D., Lennette, E. T., et al. 1985. Replication of Epstein-Barr virus within the epithelial cells of oral “hairy” leukoplakia, an AIDS-associated lesion. New Engl. J. Med. 313:1564–1571
  • Guerreiro-Cacais, A. O., Li, L., Donati, D., et al. 2004. Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J. Gen. Virol. 85:2767–2778
  • Gutierrez-Dalmau, A., and Campistol, J. M. 2007. Immunosuppressive therapy and malignancy in organ transplant recipients: A systematic review. Drugs 67:1167–1198
  • Haan, K. M., Aiyar, A., and Longnecker, R. 2001. Establishment of latent Epstein-Barr virus infection and stable episomal maintenance in murine B-cell lines. J. Virol. 75:3016–3020
  • Herr, I., Ucur, E., Herzer, K., et al. 2003. Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas. Cancer Res. 63:3112–3120
  • Hislop, A. D., Taylor, G. S., Sauce, D., and Rickinson, A. B. 2007. Cellular responses to viral infection in humans: Lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25:587–617
  • Hochreiter, R., Ptaschinski, C., Kunkel, S. L. and Rochford, R. 2007. Murine gammaherpesvirus-68 productively infects immature dendritic cells and blocks maturation. J. Gen. Virol. 88:1896–1905
  • Jusko, W. J. 1995. Pharmacokinetics and receptor-mediated pharmacodynamics of cortico-steroids. Toxicology 102:189–196
  • Kellam, P., Bourboulia, D., Dupin, N., et al. 1999. Characterization of monoclonal antibodies raised against the latent nuclear antigen of human herpesvirus 8. J. Virol. 73:5149–5155
  • Kieff, E., and Rickinson, A. (Eds). 2001. Epstein-Barr Virus and Its Replication. Philadelphia, PA: Lippincott Williams and Wilkins
  • Kliche, S., Kremmer, E., Hammerschmidt, W., et al. 1998. Persistent infection of Epstein-Barr virus-positive b lymphocytes by human herpesvirus 8. J. Virol. 72:8143–8149
  • Knowles, D. M. 1999. Immunodeficiency-associated lymphoproliferative disorders. Mod. Pathol. 12:200–217
  • Knowles, D. M., Chamulak, G. A., Subar, M., et al. 1988. Lymphoid neoplasia associated with the acquired immunodeficiency syndrome (AIDS). The New York University Medical Center experience with 105 patients (1981–1986). Ann. Intern. Med. 108:744–753
  • Krug, L. T., Collins, C. M., Gargano, L. M., and Speck, S. H. 2009. NF-κB p50 plays distinct roles in establishment and control of murine gammaherpesvirus 68 latency. J. Virol. 83:4732–4748
  • Krug, L. T., Moser, J. M., Dickerson, S. M., and Speck, S. H. 2007. Inhibition of NF-κB activation in vivo impairs establishment of gammaherpesvirus latency. PLoS Pathog. 3:e11
  • Kulkarni, A. B., Holmes, K. L., Fredrickson, T. N., et al. 1997. Characteristics of a murine gammaherpesvirus infection immunocompromised mice. In Vivo 11:281–291
  • Kurth, J., Hansmann, M. L., Rajewsky, K., and Kuppers, R. 2003. Epstein-Barr virus-infected B- cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc. Natl. Acad. Sci. USA 100:4730–4735
  • Kurth, J., Spieker, T., Wustrow, J., et al. 2000. EBV-infected B-cells in infectious mononucleosis: Viral strategies for spreading in the B-cell compartment and establishing latency. Immunity 13:485–495
  • Kutok, J. L., and Wang, F. 2006. Spectrum of Epstein-Barr virus-associated diseases. Annu. Rev. Pathol. 1:375–404
  • Laichalk, L. L., Hochberg, D., Babcock, G. J., et al. 2002. The dispersal of mucosal memory B-cells: Evidence from persistent EBV infection. Immunity 16:745–754
  • Liang, X., Paden, C. R., Morales, F. M., et al. 2011. Murine gamma-herpesvirus immortalization of fetal liver-derived B-cells requires both the viral cyclin D homolog and latency-associated nuclear antigen. PLoS Pathog. 7:e1002220
  • Lim, M. S., and Elenitoba-Johnson, K. S. 2004. The molecular pathology of primary immunodeficiencies. J. Mol. Diagn. 6:59–83
  • Loh, J., Thomas, D. A., Revell, P. A., et al. 2004. Granzymes and Caspase 3 play important roles in control of gammaherpesvirus latency. J. Virol. 78:12519–12528
  • Lukac, D. M., Renne, R., Kirshner, J. R., and Ganem, D. 1998. Re-activation of Kaposi's Sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 trans-activator, a homolog of the EBV R protein. Virology 252:304–312
  • Maini, M. K., Gudgeon, N., Wedderburn, L. R., et al. 2000. Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype. J. Immunol. 165:5729–5737
  • Majewski, M., Korecka, M., Joergensen, J., et al. 2003. Immunosuppressive tor kinase inhibitor everolimus (RAD) suppresses growth of cells derived from post-transplant lymphoproliferative disorder at allograft–protecting doses. Transplantation 75:1710–1717
  • Mansfield, K. G., Westmoreland, S. V., Debakker, C. D., et al. 1999. Experimental infection of rhesus and pig-tailed macaques with macaque rhadinoviruses. J. Virol. 73:10320–10328
  • Mauray, S., Fuzzati-Armentero, M. T., Trouillet, P., et al. 2000. Epstein-Barr virus-dependent lymphopro-liferative disease: Critical role of IL-6. Eur. J. Immunol. 30:2065–2073
  • McKhann, C. F. 1969. Primary malignancy in patients undergoing immunosuppression for renal transplantation. Transplantation 8:209–212
  • Melkus, M. W., Estes, J. D., Padgett-Thomas, A., et al. 2006. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nat. Med. 12:1316–1322
  • Mesri, E. A., Cesarman, E., Arvanitakis, L., et al. 1996. Human herpesvirus-8/Kaposi's Sarcoma-associated herpesvirus is a new transmissible virus that infects B-cells. J. Exp. Med. 183:2385–2390
  • Mesri, E. A., Cesarman, E., and Boshoff, C. 2010. Kaposi's Sarcoma and its associated herpes-virus. Nat. Rev. Cancer 10:707–719
  • Miyashita, E. M., Yang, B., Lam, K. M., et al. 1995. A novel form of Epstein-Barr virus latency in normal B-cells in vivo. Cell 80:593–601
  • Moore, P. S., Gao, S. J., Dominguez, G., et al. 1996. Primary characterization of a herpesvirus agent associated with Kaposi's Sarcoma. J. Virol. 70:549–558
  • Moser, J. M., Upton, J. W., Gray, K. S., and Speck, S. H. 2005. Ex vivo stimulation of B-cells latently infected with gammaherpesvirus 68 triggers re-activation from latency. J. Virol. 79:5227–5231
  • Mosier, D. E., Picchio, G. R., Kirven, M. B., et al. 1992. EBV-induced human B-cell lymphomas in hu-PBL-SCID mice. AIDS Res. Human Retroviruses 8:735–740
  • Nash, A. A., Dutia, B. M., Stewart, J. P., and Davison, A. J. 2001. Natural history of murine gamma-herpesvirus infection. Philos. Trans. Royal Soc. London B 356:569–579
  • Nepomuceno, R. R., Balatoni, C. E., Natkunam, Y., et al. 2003. Rapamycin inhibits IL-10 signal transduction pathway and growth of Epstein Barr virus B-cell lymphomas. Cancer Res. 63:4472–4480
  • O’Connor, C. M., and Kedes, D. H. 2007. Rhesus monkey rhadinovirus: A model for the study of KSHV. Curr. Topics Microbiol. Immunol. 312:43–69
  • Obar, J. J., Crist, S. G., Gondek, D. C., and Usherwood, E. J. 2004. Different functional capacities of latent and lytic antigen-specific CD8 T-cells in murine gammaherpesvirus infection. J. Immunol. 172:1213–1219
  • Ochs, H. D., and Thrasher, A. J. 2006. Wiskott-Aldrich syndrome. J. Allergy Clin. Immunol. 117:725–738
  • Parravicini, C., Chandran, B., Corbellino, M., et al. 2000. Differential viral protein expression in Kaposi's Sarcoma-associated herpesvirus-infected diseases: Kaposi's Sarcoma, primary effusion lymphoma, and Multicentric Castle-man's disease. Am. J. Pathol. 156:743–749
  • Parsons, C. H., Adang, L. A., Overdevest, J., et al. 2006. KSHV targets multiple leukocyte lineages during long-term productive infection in nod/scid mice. J. Clin. Invest. 116:1963–1973
  • Ragoczy, T., Heston, L., and Miller, G. 1998. The Epstein-Barr virus RTA protein activates lytic cycle genes and can disrupt latency in B-lymphocytes. J. Virol. 72:7978–7984
  • Rappocciolo, G., Hensler, H. R., Jais, M., et al. 2008. Human herpesvirus 8 infects and replicates in primary cultures of activated B- lymphocytes through dc-sign. J. Virol. 82:4793–4806
  • Rezk, S. A., and Weiss, L. M. 2007. Epstein-Barr virus-associated lymphoproliferative disorders. Human Pathol. 38:1293–1304
  • Robey, R. C., Mletzko, S., and Gotch, F. M. 2010. The T-cell immune response against Kaposi's Sarcoma-associated herpesvirus. Adv. Virol. 2010:340356
  • Robinson, A. R., Kwek, S. S., Hagemeier, S. R., et al. 2011. Cellular transcription factor OCT-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J. Virol. 85:8940–8953
  • Roizman, B., and Knipe, D. M. 2001. Herpes simplex viruses and their replication. In: Fields Virology, 4th Edition. (Knipe, D. M., Howley, P. M., Griffin, D. E., et al, Eds.). Philadelphia, PA, Lippincott Williams and Wilkins, pp. 2399–2459
  • Rowe, M., Lear, A. L., Croom-Carter, D., et al. 1992. Three pathways of Epstein-Barr virus gene activation from EBNA-1 positive latency in B- lympho-cytes. J. Virol. 66:122–131
  • Rowe, M., Young, L. S., Crocker, J., et al. 1991. Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: Implications for the pathogenesis of EBV-positive lymphomas in man. J. Exp. Med. 173:147–158
  • Rutz, H. P. 2002. Effects of corticosteroid use on treatment of solid tumors. Lancet 360:1969–1970
  • Ryffel, B., Mihatsch, M. J., and Fisher, G. L. 1992. Immunosuppression and cancer: The cyclosporin case. Drug Chem. Toxicol. 15:95–115
  • Sathy, S. J., Martinu, T., Youens, K., et al. 2008. Symptomatic pulmonary allograft Kaposi's Sarcoma in two lung transplant recipients. Am. J. Transplant. 8:1951–1956
  • Schwartz, R. S. 2001. Immunodeficiency, immunosuppression, and susceptibility to neoplasms. J. Natl. Cancer Inst. Monogr. 28:5–9
  • Schwarzmann, F., Jager, M., Prang, N., and Wolf, H. 1998. The control of lytic replication of Epstein-Barr virus in B-lymphocytes (review). Intl. J. Mol. Med. 1:137–142
  • Shannon-Lowe, C., Adland, E., Bell, A. I., et al. 2009. Features distinguishing Epstein-Barr virus infections of epithelial cells and B-cells: Viral genome expression, genome maintenance, and genome amplification. J. Virol. 83:7749–7760
  • Shultz, L. D., Ishikawa, F., and Greiner, D. L. 2007. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7:118–130
  • Sibilia, J., and Westhovens, R. 2007. Safety of T-cell co-stimulation modulation with abatacept in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 25:S46–S56
  • Simas, J. P., and Efstathiou, S. 1998. Murine gammaherpesvirus 68: A model for the study of gammaherpesvirus pathogenesis. Trends Microbiol. 6:276–282
  • Simas, J. P., Swann, D., Bowden, R., and Efstathiou, S. 1999. Analysis of murine gamma-herpesvirus-68 transcription during lytic and latent infection. J. Gen. Virol. 80:75–82
  • Sinclair, A., Yarranton, S., and Schelcher, C. 2006. DNA-damage response pathways triggered by viral replication. Expert Rev. Mol. Med. 8:1–11
  • Sixbey, J. W., Nedrud, J. G., Raab-Traub, N., et al. 1984. Epstein-Barr virus replication in oropharyngeal epithelial cells. New Engl. J. Med. 310:1225–1230
  • Sparks-Thissen, R. L., Braaten, D. C., Hildner, K., et al. 2005. CD4 T-cell control of acute and latent murine gammaherpesvirus infection requires IFNγ. Virology 338:201–208
  • Speck, S. H., and Ganem, D. 2010. Viral latency and its regulation: Lessons from the gamma-herpesviruses. Cell Host Microbe 8:100–115
  • Speck, S. H., Chatila, T., and Flemington, E. 1997. Re-activation of Epstein-Barr virus: Regulation and function of the BZLF1 gene. Trends Microbiol. 5:399–405
  • Staskus, K. A., Zhong, W., Gebhard, K., et al. 1997. Kaposi's Sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71:715–719
  • Staudt, M. R., and Dittmer, D. P. 2007. The RTA/ORF50 transactivator proteins of the gamma-herpesviridae. Curr. Topics Microbiol. Immunol. 312:71–100
  • Steven, N. M., Annels, N. E., Kumar, A., et al. 1997. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T-cell response. J. Exp. Med. 185:1605–1617
  • Steven, N. M., Leese, A. M., Annels, N. E., et al. 1996. Epitope focusing in the primary cytotoxic T-cell response to Epstein-Barr virus and its relationship to T-cell memory. J. Exp. Med. 184:1801–1813
  • Stevenson, P. G., Cardin, R. D., Christensen, J. P., and Doherty, P. C. 1999. Immunological control of a murine gammaherpesvirus independent of CD8+ T-cells. J. Gen. Virol. 80:477–483
  • Sun, R., Lin, S. F., Gradoville, L., et al. 1998. A viral gene that activates lytic cycle expression of Kaposi's Sarcoma-associated herpesvirus. Proc. Natl. Acad. Sci USA 95:10866–10871
  • Sunil-Chandra, N. P., Arno, J., Fazakerley, J., and Nash, A. A. 1994. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am. J. Pathol. 145:818–826
  • Sunil-Chandra, N. P., Efstathiou, S., Arno, J., and Nash, A. A. 1992a. Virological and pathological features of mice infected with murine gamma-herpesvirus 68. J. Gen. Virol. 73:2347–2356
  • Sunil-Chandra, N. P., Efstathiou, S., and Nash, A. A. 1992b. Murine gammaherpesvirus 68 establishes a latent infection in mouse B-lymphocytes in vivo. J. Gen. Virol. 73:3275–3279
  • Sunil-Chandra, N. P., Efstathiou, S., and Nash, A. A. 1993. Interactions of murine gamma-herpesvirus 68 with B- and T-cell lines. Virology 193:825–833
  • Takeda, K., Kaisho, T., and Akira, S. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335–376
  • Tarakanova, V. L., Kreisel, F., White, D. W., and Virgin, H. W. t. 2008. Murine gamma-herpesvirus 68 genes both induce and suppress lymphoproliferative disease. J. Virol. 82:1034–1039
  • Tarakanova, V. L., Suarez, F., Tibbetts, S. A., et al. 2005. Murine gammaherpesvirus 68 infection is associated with lymphoproliferative disease and lymphoma in Balb β2-microglobulin-deficient mice. J. Virol. 79:14668–14679
  • Teachey, D. T., Grupp, S. A., and Brown, V. I. 2009. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br. J. Hematol. 145:569–580
  • Thorley-Lawson, D. A. 2005. EBV the prototypical human tumor virus - just how bad is it? J. Allergy Clin. Immunol. 116:251–261
  • Thorley-Lawson, D. A., and Gross, A. 2004. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. New Engl. J. Med. 350:1328–1337
  • Thorley-Lawson, D. A., Duca, K. A., and Shapiro, M. 2008. Epstein-Barr virus: A paradigm for persistent infection - for real and in virtual reality. Trends Immunol. 29:195–201
  • Thorley-Lawson, D. A., Nadler, L. M., Bhan, A. K., and Schooley, R. T. 1985. Blast-2 [EBVcs], an early cell surface marker of human B-cell activation, is superinduced by Epstein Barr virus. J. Immunol. 134:3007–3012
  • Thorley-Lawson, D. A., Schooley, R. T., Bhan, A. K., and Nadler, L. M. 1982. Epstein-Barr virus superinduces a new human B-cell differentiation antigen (BLAST-1) expressed on transformed lymphoblasts. Cell 30:415–425
  • Tibbetts, S. A., Van Dyk, L. F., Speck, S. H., and Virgin, H. W. 2002. Immune control of the number and re-activation phenotype of cells latently infected with a gammaherpesvirus. J. Virol. 76:7125–7132
  • Topham, D. J., Cardin, R. C., Christensen, J. P., et al. 2001. Perforin and fas in murine gammaherpesvirus-specific CD8+ T-cell control and morbidity. J. Gen. Virol. 82:1971–1981
  • Tran, H., Nourse, J., Hall, S., et al. 2008. Immunodeficiency-associated lymphomas. Blood Rev. 22:261–281
  • Tsai, C. C., Giddens, W. E. Jr, Morton, W. R., et al. 1985. Retroperitoneal fibromatosis and acquired immunodeficiency syndrome in macaques: Epidemiologic studies. Lab. Anim. Sci. 35:460–464
  • Tsai, C. C., Giddens, W. E. Jr, Ochs, H. D., et al. 1986. Retroperitoneal fibromatosis and acquired immunodeficiency syndrome in macaques: Clinical and immunologic studies. Lab. Anim. Sci. 36:119–125
  • Usherwood, E. J., Stewart, J. P., and Nash, A. A. 1996a. Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice. J. Virol. 70:6516–6518
  • Usherwood, E. J., Stewart, J. P., Robertson, K., et al. 1996b. Absence of splenic latency in murine gammaherpesvirus 68-infected B-cell-deficient mice. J. Gen. Virol. 77:2819–2825
  • Virgin, H. W. t., Latreille, P., Wamsley, P., et al. 1997. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71:5894–5904
  • Wagar, E. J., Cromwell, M. A., Shultz, L. D., et al. 2000. Regulation of human cell engraftment and development of EBV-related lymphoproliferative disorders in Hu-PBL-scid mice. J. Immunol. 165:518–527
  • Walling, D. M., Flaitz, C. M., Nichols, C. M., et al. 2001. Persistent productive Epstein-Barr virus replication in normal epithelial cells in vivo. J. Infect. Dis. 184:1499–1507
  • Weaver, J. L. 2012. Establishing the carcinogenic risk of immunomodulatory drugs. Toxicol. Pathol. 40:267–271
  • Weck, K. E., Barkon, M. L., Yoo, L. I., et al. 1996. Mature B-cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J. Virol. 70:6775–6780
  • Weck, K. E., Dal Canto, A. J., Gould, J. D., et al. 1997. Murine gamma-herpesvirus 68 causes severe large-vessel arteritis in mice lacking IFNγ responsiveness: A new model for virus-induced vascular disease. Nat. Med. 3:1346–1353
  • Weck, K. E., Kim, S. S., Virgin, H. I., and Speck, S. H. 1999. Macrophages are the major reservoir of latent murine gammaherpesvirus 68 in peritoneal cells. J. Virol. 73:3273–3283
  • Weitzman, M. D., Lilley, C. E., and Chaurushiya, M. S. 2010. Genomes in conflict: Maintaining genome integrity during virus infection. Annu. Rev. Microbiol. 64:61–81
  • Wen, K. W., and Damania, B. 2010. Kaposi Sarcoma-associated herpesvirus (KSHV): Molecular biology and oncogenesis. Cancer Lett. 289:140–150
  • Westmoreland, S. V., and Mansfield, K. G. 2008. Comparative pathobiology of Kaposi Sarcoma-associated herpesvirus and related primate rhadinoviruses. Comp. Med. 58:31–42
  • Wheat, W. H., Cool, C. D., Morimoto, Y., et al. 2005. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J. Exp. Med. 202:479–484
  • Willer, D. O., and Speck, S. H. 2003. Long-term latent murine gammaherpesvirus 68 infection is preferentially found within the surface IgD subset of splenic B-cells in vivo. J. Virol. 77:8310–8321
  • Wong, S. W., Bergquam, E. P., Swanson, R. M., et al. 1999. Induction of B-cell hyperplasia in simian immunodeficiency virus-infected rhesus macaques with the simian homologue of Kaposi's Sarcoma-associated herpesvirus. J. Exp. Med. 190:827–840
  • Wu, T. T., Usherwood, E. J., Stewart, J. P., et al. 2000. RTA of murine gammaherpesvirus 68 re-activates the complete lytic cycle from latency. J. Virol. 74:3659–3667
  • Wu, W., Rochford, R., Toomey, L., et al. 2005. Inhibition of HHV-8/KSHV infected primary effusion lymphomas in nod/scid mice by azidothymidine and interferon-alpha. Leukemia Res. 29:545–555
  • Yajima, M., Imadome, K., Nakagawa, A., et al. 2008. A new humanized mouse model of Epstein-Barr virus infection that reproduces persistent infection, lymphoproliferative disorder, and cell-mediated and humoral immune responses. J. Infect. Dis. 198:673–682
  • Yang, Z., Tang, H., Huang, H., and Deng, H. 2009. RTA promoter demethylation and histone acetylation regulation of murine gammaherpesvirus 68 re-activation. PLoS One 4:e4556
  • Ye, F., Lei, X., and Gao, S. J. 2011. Mechanisms of Kaposi's Sarcoma-associated herpesvirus latency and re-activation. Adv. Virol. 2011:193860
  • Yu, X., Wang, Z., and Mertz, J. E. 2007. ZEB1 regulates the latent-lytic switch in infection by Epstein-Barr virus. PLoS Pathog. 3:e194
  • Zafar, S. Y., Howell, D. N., and Gockerman, J. P. 2008. Malignancy after solid organ transplantation: An overview. Oncologist 13:769–778
  • Zalani, S., Holley-Guthrie, E., and Kenney, S. 1996. Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc. Natl. Acad. Sci. USA 93:9194–9199
  • Zychlinska, M., Herrmann, H., Zimber-Strobl, U., and Hammerschmidt, W. 2008. Restricted expression of Epstein-Barr virus latent genes in murine B-cells derived from embryonic stem cells. PLoS One 3:e1996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.