2,974
Views
56
CrossRef citations to date
0
Altmetric
Original Articles

Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages

, , &
Pages 157-164 | Received 22 Dec 2014, Accepted 10 Mar 2015, Published online: 27 Mar 2015

References

  • Adcock, I. M., and Caramori, G. 2001. Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol. Cell. Biol. 79:376–384
  • Al-Khalaf, M. I. 2013. Thyme and thymol effects on induced bronchial asthma in mice. Life Sci. J. 10:693–699
  • Amirghofran, Z., Hashemzadeh, R., Javidnia, K., et al. 2011. In vitro immunomodulatory effects of extracts from three plants of the Labiatae family and isolation of the active compound(s). J. Immunotoxicol. 8:265–273
  • Chan, A. S., Pang, H., Yip, E. C., et al. 2005. Carvacrol and eugenol differentially stimulate intracellular Ca2+ mobilization and mitogen-activated protein kinases in Jurkat T-cells and monocytic THP-1 cells. Planta. Med. 71:634–639
  • Chen, F., Castranova, V., Shi, X., and Demers, L. M. 1999. New insights into the role of NF-κB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45:7–17
  • D'Acquisto, F., May, M. J., and Ghosh S. 2002. Inhibition of NF-κB: An emerging theme in anti-inflammatory therapies. Mol. Interv. 2:22–35
  • de Bosscher, K., Beck, I. M., Dejager, L., et al. 2014. Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cell Mol. Life Sci. 71:143–163
  • Fachini-Queiroz, F. C., Kummer, R., Estevão-Silva, C.F., et al. 2012. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid Based Complement Alternat Med. 2012:657026
  • Ferrer, I., Blanco, R., Carmona, M., et al. 2002. Active, phosphorylation-dependent MAP kinases, MAPK/ERK, SAPK/JNK and p38, and specific transcription factor substrates are differentially expressed following systemic administration of kainic acid to the adult rat. Acta Neuropathol. 103:391–407
  • Fric, J., Zelante, T., Wong, A. Y., et al. 2012. NFAT control of innate immunity. Blood 120:1380–1389
  • Guimarães, A. G., Xavier, M. A., de Santana, M. T., et al. 2012. Carvacrol attenuates mechanical hyper-nociception and inflammatory response. Naunyn Schmied. Arch. Pharmacol. 385:253–263
  • Hawiger, J. 2001. Innate immunity and inflammation: A transcriptional paradigm. Immunol. Res. 23:99–109
  • Hoffmann, A., and Baltimore, D. 2006. Circuitry of NF-κB signaling. Immunol. Rev. 210:171–186
  • Juhás, Š. D., Bujňáková, P., Rehák, Š., et al. 2008. Anti-inflammatory effects of thyme essential oil in mice. Acta Vet. Brno. 77:327–334
  • Kazmi, S. M., Plante, R. K., Visconti, V., et al. 1995. Suppression of NF-κB activation and NF κB-dependent gene expression by tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase. J. Cell. Biochem. 57:299–310
  • Kim, H. Y., Park, E. J., Joe, E. H., and Jou, I. 2003. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J. Immunol. 171:6072–6079
  • Kortylewski, M., Xin, H., Kujawski, M., et al. 2009. Regulation of the IL-23 and IL-12 balance by STAT-3 signaling in the tumor microenvironment. Cancer Cell. 15:114–123
  • Kumar, S., Boehm, J., and Lee, J. C. 2003. p38 MAP kinases: Key signalling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov. 2:717–726
  • Landa, P., Kokoska, L., Pribylova, M., et al. 2009. In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed PGE2 biosynthesis. Arch. Pharm. Res. 32:75–78
  • Liang, D., Li, F., Fu, Y., et al. 2014. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation 37:214–222
  • Lima, M. D., Quintans-Júnior, L. J., de Santana, W. A., et al. 2013. Anti-inflammatory effects of carvacrol: Evidence for a key role of IL-10. Eur. J. Pharmacol. 699:112–117
  • Liu, Z., Lee, J., Krummey, S., et al. 2011. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 12:1063–1070
  • Mohamed, D. A., Mahmoud, E. A., Abdel-Moniem, S., and Hassan, M. 2013. Anti-inflammatory and anti-arthritic activity of some spices extracts on adjuvant induced arthritis in rats. J. Appl. Sci. Res. 9:5303–5312
  • Murakami, A., and Ohigashi, H. 2007. Targeting NOX, INOS and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 121:2357–2363
  • Ocaña, A., and Reglero, G. 2012. Effects of thyme extract oils (from Thymus vulgaris, T. zygis, and T. hyemalis) on cytokine production and gene expression of oxLDL-stimulated THP-1-macrophages. J. Obesity 2012:104706
  • O'Shea, J. J., and Murray, P. J. 2008. Cytokine signaling modules in inflammatory responses. Immunity 28:477–487
  • Park, J. S., Lee, J., Lim, M. A., et al. 2014. JAK2-STAT3 blockade by AG490 suppresses autoimmune arthritis in mice via reciprocal regulation of regulatory T-cells and TH17 cells. J. Immunol. 192:4417–4424
  • Park, S., Sung, B., Jang, E. J., et al. 2013. Inhibitory action of salicylideneamino-2-thiophenol on NF-κB signaling cascade and cyclooxygenase-2 in HNE-treated endothelial cells. Arch. Pharm. Res. 36:880–889
  • Purushoth, T., Panneerselvam, P., Vijaykumar, R., et al. 2012. Anti-inflammatory, anti-arthritis, and analgesic effect of ethanolic extract of whole plant of Merremia Emarginata Burm. F. Cent. Eur. J. Exp. Biol. 1:94–99
  • Roy, P. K., Rashid, F., Bragg, J., and Ibdah, J. A. 2008. Role of JNK signal transduction pathway in inflammatory bowel disease. World J. Gastroenterol. 14:200–202
  • Ryu, Y. S., Lee, J. H., Seok, J. H., et al. 2000. Acetaminophen inhibits iNOS gene expression in RAW 264.7 macrophages: Differential regulation of NF-κB by acetaminophen and salicylates. Biochem. Biophys. Res. Commun. 16:758–764
  • Saklatvala, J. 2004. p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr. Opin. Pharmacol. 4:372–377
  • Samara, R. B., Damasceno, F. R., Nathalia, S., et al. 2014. Carvacryl acetate, a derivative of carvacrol, reduces nociceptive and inflammatory response in mice. Life. Sci. 14:58–66
  • Stein, B., Baldwin, A. S., Ballard, D. W., et al. 1993. Cross-coupling of the NF-κB p65 and Fos/Jun transcription factors produces potentiated biological function. EMBO J. 12:3879–3891
  • Surh, Y. J., Chun, K. S., Cha, H. H., et al. 2001. Molecular mechanisms underlying chemo-preventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat. Res. 480:243–268
  • Viatour, P., Merville, M. P., Bours, V., and Chariot, A. 2005. Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation. Trends Biochem. Sci. 30:43–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.