1,599
Views
14
CrossRef citations to date
0
Altmetric
Research Article

A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection

, , , &
Pages 181-190 | Received 30 Dec 2014, Accepted 15 Mar 2015, Published online: 27 Mar 2015

References

  • Alali, F., Tawaha, K., and Qasaymeh, R. M. 2004. Determination of colchicine in Colchicum steveni and C. hierosolymitanum (Colchicaceae): Comparison between two analytical methods. Phytochem. Anal. 15:27–29
  • Albrecht, U., Yang, X., Asselta, R., et al. 2007. Activation of NF-κB by IL-1β blocks IL-6-induced sustained STAT3 activation and STAT3-dependent gene expression of the human gamma-fibrinogen gene. Cell Signal 19:1866–1878
  • Aloisi, F. 2001. Immune function of microglia. Glia 36:165–179
  • Angelucci, F., Spalletta, G., di Iulio, F., et al. 2010. Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr. Alzheimer Res. 7:15–20
  • Austin, S. A., and Combs, C. K. 2008. Mechanisms of microglial activation by amyloid pre-cursor protein and its proteolytic fragments. In: Central Nervous System Diseases and Inflammation (Lane, T.E., Carson, M., Bergmann, C., and Wyss-Coray, T.). London: Springer, pp. 13–32
  • Barone, E., Di Domenico, F., Cenini, G., et al. 2011. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer’s disease and amnestic mild cognitive impairment. J. Alzheimers. Dis. 25:623–633
  • Bell, K. F., and Claudio Cuello, A. 2006. Altered synaptic function in Alzheimer’s disease. Eur. J. Pharmacol. 545:11–21
  • Brickell, C. D. 1984. Colchicum L. In: Flora of Turkey and the East Aegean Islands (Davis, P.H.). Edinburgh, UK: Edinburgh University Press, pp. 329–351
  • Brilliant, M. J., Elble, R. J., Ghobrial, M., and Struble, R. G. 2003. The distribution of amyloid β protein deposition in corpus striatum of patients with Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 23:322–325
  • Brun, A., and Englund, E. 1981. Regional pattern of degeneration in Alzheimer’s disease: Neuronal loss and histopathological grading. Histopathology 5:549–564
  • Cox, G. 1977. Neuropathological techniques. In: Theory & Practice of Histological Techniques (Bancroft, J. D., and Stevens, A.), London: Elsevier, pp. 258–259
  • Csolle, C., and Sperlagh, B. 2010. Peripheral origin of IL-1β production in rodent hippocampus under in vivo systemic bacterial lipoplysaccharide (LPS) challenge and regulation by P2X7 receptors. J. Neuroimmunol. 219:38–46
  • Csölle, C., and Sperlagh, B. 2011. Endo-cannabinergic modulation of IL-1β in mouse hippo-campus under basal conditions and after in vivo systemic lipopolysaccharide stimulation. Neuroimmunomodulation 18:226–231
  • Cuénod, C. A., Denys, A., Michot, J. L., et al. 1993. Amygdala atrophy in Alzheimer’s Disease: An in vivo magnetic resonance imaging study. Arch. Neurol. 50:941–945
  • Drenth, J. P., and van der Meer, J. W. 2001. Hereditary periodic fever. New Engl. J. Med. 345:1748–1757
  • Emerich, D. F., and Walsh, T. J. 1990. Cholinergic cell loss and cognitive impairments following intraventricular or intradentate injection of colchicine. Brain Res. 517:157–167
  • Fan, Y., Dutta, J., Gupta, N., Fan, G., et al. 2008. Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. Adv. Exp. Med. Biol. 615:223–250
  • Fanelli, F., Sepe, S., D’Amelio, M., et al. 2013. Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol. Neurodeg. 8:8
  • Figarella, K., Rawer, M., Uzcategui, N. L., et al. 2005. Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Diff. 12:335–346
  • Ganguly, R., and Guha, D. 2008. Alzheimer’s disease and protection by Moringa oleifera. Indian J. Med. Res. 128:744–751
  • Gehrmann, J., Matsumoto, Y., and Kreutzberg, G. W. 1995. Microglia: Intrinsic immune effector cell of the brain. Brain Res. Rev. 20:269–287
  • Giuliani, D., Bitto, A., Galantucci, M., et al. 2014. Melanocortins protect against progression of Alzheimer’s disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiol. Aging 35:537–547
  • Green, L. C., Wagner, D. A., Glogowski, J., et al. 1982. Analysis of nitrate, nitrite, and [15N]-nitrate in biological fluids. Anal. Biochem. 126:131–138
  • Jacobs, H. I., van Boxtel, M. P., Jolles, J., et al. 2012. Parietal cortex matters in Alzheimer’s disease: An overview of structural, functional and metabolic findings. Neurosci. Biobehav. Rev. 36:297–309
  • Ke, J., Long, X., Liu, Y., et al. 2007. Role of NF-κB in TNFα-induced COX-2 expression in synovial fibroblasts from human TMJ. J. Dent. Res. 86:363–367
  • Koo, E. H., Sisodia, S. S., Archer, D. R., et al. 1990. Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. USA 87:1561–1565
  • Kumar, A., Dogra, S., and Prakash, A. 2010. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats. J. Med. Food 13:976–984
  • Kumar, A., Naidu, P. S., Seghal, N., and Padi, S. S. 2007b. Neuroprotective effects of resveratrol against intra-cerebroventricular colchicine-induced cognitive impairment and oxidative stress in rats. Pharmacology 79:17–26
  • Kumar, A., Seghal, N., Naidu, P. S., et al. 2007a. Colchicine-induced neuro-toxicity as an animal model of sporadic dementia of Alzheimer’s type. Pharmacol. Rep. 59:274–283
  • Kumar, A., Sehgal. N., Puneet, K., et al. 2008. Protective effect of quer-cetin against icv colchicine-induced cognitive dysfunctions and oxidative damage in rats. Phytother. Res. 22:1563–1569
  • Kumar, M. H., and Gupta, Y. K. 2002. Intra-cerebroventricular administration of colchicine produces cognitive impairment associated with oxidative stress in rats. Pharmacol. Biochem. Behav. 73:565–571
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275
  • Mallat, M., and Chamak, B. 1994. Brain macrophages: Neurotoxic or neurotrophic effector cells? J. Leukocyte Biol. 56:416–422
  • Minton, K. 2001. Immune mechanisms in neurological disorders: Protective or destructive? Trends Immunol. 22:655–657
  • Mizuno, M., Yamada, K., Olariu, A., et al. 2000. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a Radial Arm Maze test in rats. J. Neurosci. 20:7116–7121
  • Mouton, P. R., Martin, L., Calhoun, M., et al. 1998. Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol. Aging 19:371–377
  • Nolan, Y., Vereker, E., Lynch, A. M., and Lynch, M. A. 2003. Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Exp. Neurol. 184:794–804
  • Nyoman, G., and Darmadipura, S. 2007. Role of microglia as prime component of CNS immune system in acute and chronic neuroinflammation. Folica Med. Indonesiana 43:54–58
  • Parikh, A. A., Moon, M., Pritts, T., et al. 2000. IL-1β induction of NF-κB activation in human intestinal epithelial cells is independent of oxyradical signaling. Shock 13:8–13
  • Paxinos, G., and Watson, C., (Eds.). 1986. The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Academic Press
  • Pitchaimani, V., Arumugam, S., Thandavarayan, R. A., et al. 2012. Nootropic activity of aceta-minophen against colchicine induced cognitive impairment in rats. Clin. Biochem. Nutr. 50:241–244
  • Rai, S., Kamat, P. K., Nath, C., and Shukla, R. 2013. A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J. Neuroimmunol. 254:1–9
  • Roy, C. 2014. Role of Moringa oleifera on hippocampal cell morphology and senile plaque formation in colchicine induced experimental rat model of Alzeimer’s Disease. Intl. J. Curr. Pharm. Res. 6:51–54
  • Sabuncu, M., Desikan, R., Sepulcre, J., et al. 2011. Dynamics of cortical and hippocampal atrophy in Alzheimer Disease. Arch. Neurol. 68:1040–1048
  • Shibli, R. A., Daradkah, N. Q., Makhadmeh, I. M., and Baghdadi, S. H. 2010. Colchicine production from colchicum and the role of in vitro cultures: A review. Jordan. J. Agric. Sci. 6:208–222
  • Shigematsu, K., and McGeer, P. L. 1992. Accumulation of amyloid precursor protein in neurons after intraventricular injection of colchicine. Am. J. Pathol. 140:787–794
  • Sil, S., Goswami, A. R., Dutta, G., and Ghosh, T. 2014. Effects of naproxen on some immune responses in colchicine induced rat model of Alzheimer’s Disease. Neuroimmunomodulation 21:304–321
  • Socci, D. J., Bjugstad, K. B., Jones, H. C., et al. 1999. Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp. Neurol. 155:109–117
  • Stevens, A., and Bancroft, J. D., (Eds.). 1977. Proteins and nucleic acids. In: Theory and Practice of Histological Techniques. London: Elsevier, pp. 129
  • Streit, W. J. 1993. Microglial-neuronal interactions. J. Chem. Neuroanat. 6:261–266
  • Terkeltaub, R. A. 2003. Clinical practice. Gout. New. Engl. J. Med. 349:1647–1655
  • Trease, G. E., and Evans, W. C., (Eds.). 1989. Pharmacognosy. London: Elsevier, pp. 600–603
  • Wilson, L. 1986. Microtubules as targets for drug and toxic chemical action: The mechanisms of colchicine and vinblastine. In: The Cytoskeleton – A Target for Toxic Agents (Clarkson, T. W., Sagar, P. R., and Syversen, T. L.). New York: Plenum Press, pp. 37–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.