1,249
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells

, , &
Pages 198-208 | Received 19 Jan 2015, Accepted 26 Mar 2015, Published online: 15 Apr 2015

References

  • Afzali, B., Lombardi, G., Lechler, R. I., and Lord, G. M. 2007. The role of T-helper 17 (TH17) and regulatory T-cells (Treg) in human organ transplantation and autoimmune disease. Clin. Exp. Immunol. 148:32–46
  • Blake, D. J., Bolin, C. M., Cox, D. P., et al. 2007. Internalization of Libby amphibole asbestos and induction of oxidative stress in murine macrophages. Toxicol. Sci. 99:277–288
  • Chen, H., Dorrigan, A., Saad, S., et al. 2013. In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One 8:e58208
  • Downs, T. R., Crosby, M. E., Hu, T., et al. 2012. Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutat. Res. 745:38–50
  • Du, L., Miao, X., Jia, H., et al. 2012. Detection of nitric oxide in macrophage cells for the assessment of the cytotoxicity of gold nanoparticles. Talanta 101:11–16
  • Dwivedi, C., and Paul, S. D. 2013. Nanotechnology to nanotoxicology: A review. J. Sci. Innov. Res. 2:458–470
  • Eissa, S., Shawky, S. M., Matboli, M., et al. 2014. Direct detection of unamplified hepatoma upregulated protein RNA in urine using gold nanoparticles for bladder cancer diagnosis. Clin. Biochem. 47:104–110
  • Farkas, J., Christian, P., Urrea, J. A., et al. 2010. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 96:44–52
  • Furuzawa-Carballeda, J., Vargas-Rojas, M. I., and Cabral, A. R. 2007. Autoimmune inflammation from the TH17 perspective. Autoimmun. Rev. 6:169–175
  • Geiser, M., Quaile, O., Wenk, A., et al. 2013. Cellular uptake and localization of inhaled gold nanoparticles in lungs of mice with chronic obstructive pulmonary disease. Part. Fibre Toxicol. 10:19–29
  • Gerber, H. P., Dixit, V., and Ferrara, N. 1998. Vascular endothelial growth factor induces expression of the anti-apoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem. 273:13313–13316
  • Ghosh, S. K., and Pal, T. 2007. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 107:4797–4862
  • Haiss, W., Thanh, N. T., Aveyard, J., and Fernig, D. G. 2007. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79:4215–4221
  • Hashimoto, M., Toshima, H., Yonezawa, T., et al. 2014. Responses of RAW264.7 macrophages to water-dispersible gold and silver nanoparticles stabilized by metal-carbon σ-bonds. J. Biomed. Mater. Res. 102:1838–1849
  • Hussain, M. M., Samir, T. M., and Azzazy, H. M. 2013. Unmodified gold nanoparticles for direct and rapid detection of Mycobacterium tuberculosis complex. Clin. Biochem. 46:633–637
  • Ionita, P., Spafiu, F., and Ghica, C. 2008. Dual behavior of gold nanoparticles, as generators and scavengers for free radicals. J. Mater. Sci. 43:6571–6574
  • Jans, H., Liu, X., Austin, L., et al. 2009. Dynamic Light Scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal. Chem. 81:9425–9432
  • Kang, J. L., Moon, C., Lee, H. S., et al. 2008. Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J. Toxicol. Environ. Health 71:478–485
  • Kim, T. S., Kang, B. Y., Lee, M. H., et al. 2001. Inhibition of IL-12 production by auranofin, an anti-rheumatic gold compound, deviates CD4+ T-cells from the TH1 to the TH2 pathway. Br. J. Pharmacol. 134:571–578
  • Liu, H., Yang, D., Yang, H., et al. 2013a. Comparative study of respiratory tract immune toxicity induced by three sterilization nanoparticles: Silver, zinc oxide and titanium dioxide. J. Haz. Mater. 2013:478–486
  • Liu, X. L., Xu, Y. J., Wu, Z. Q., and Chen, H. 2013b. Poly-N-vinylpyrrolidone-modified surfaces for biomedical applications. Macromol. Biosci. 13:147–154
  • Liu, Z., Li, W., Wang, F., et al. 2012. Enhancement of lipopolysaccharide-induced NO and IL-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale 4:7135–7142
  • Madeira, J. M., Gibson, D. L., Kean, W. F., and Klegeris, A. 2012. The biological activity of auranofin: Implications for novel treatment of diseases. Inflammopharmacology 20:297–306
  • Murata, Y., Amao, M., Yoneda, J., and Hamuro, J. 2002. Intracellular thiol redox status of macrophages directs the TH1 skewing in thioredoxin transgenic mice during aging. Mol. Immunol. 38:747–757
  • Nel, A., Xia, T., Madler, L., and Li, N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627
  • Overocker, J., and Pfau, J. C. 2012. Cytokine production modified by system x(c)- after PM10 and asbestos exposure. J. Young Invest. 23:34–39
  • Pfau, J. C., Seib, T., Overocker, J. J., et al. 2012. Functional expression of system x(c)- is up-regulated by asbestos but not crystalline silica in murine macrophages. Inhal. Toxicol. 24:476–485
  • Scherbart, A. M., Langer, J., Bushmelev, A., et al. 2011. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part. Fibre Toxicol. 8:31
  • Schreck, R., Albermann, K., and Baeuerle, P. A. 1992. NF-κB: An oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Rad. Res. Commun. 17:221–237
  • Sumbayev, V. V., Yasinska, I. M., Garcia, C. P., et al. 2013. Gold nanoparticles down-regulate IL-1β-induced pro-inflammatory responses. Small 9:472–477
  • Suzuki, H., Toyooka, T., and Ibuki, Y. 2007. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ. Sci. Technol. 41:3018–3024
  • Thakor, A. S., Jokerst, J., Zavaleta, C., et al. 2011. Gold nano-particles: A revival in precious metal administration to patients. Nano. Lett. 11:4029–4036
  • Valles, G., Gonzalez-Melendi, P., Gonzalez-Carrasco, J. L., et al. 2006. Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials 27:5199–5211
  • Villiers, C. L., Freitas, H., Couderc, R., et al. 2010. Analysis of the toxicity of gold nanoparticles on the immune system: Effect on dendritic cell functions. J. Nanopart. Res. 12:55–60
  • Voorhees, P. W. 1984. The theory of Ostwald ripening. J. Stat. Phys. 38:231–252
  • Zebedeo, C. N., Davis, C., Peña, C., et al. 2014. Erionite induces production of autoantibodies and IL-17 in C57BL/6 mice. Toxicol. Appl. Pharmacol. 275:257–264
  • Zhang, Z., Berg, A., Levanon, H., et al. 2003. On the interactions of free radicals with gold nanoparticles. J. Amer. Chem. Soc. 125:7959–7963

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.