695
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Recombinant Leishmania major lipophosphoglycan 3 activates human T-lymphocytes via TLR2-independent pathway

, , , , , , , & show all
Pages 263-269 | Received 07 May 2015, Accepted 23 Jun 2015, Published online: 16 Jul 2015

References

  • Abdian, N., Gholami, E., Zahedifard, F., et al. 2011. Evaluation of DNA/DNA and prime-boost vaccination using LPG3 against Leishmania major infection in susceptible BALB/c mice and its antigenic properties in human leishmaniasis. Exp. Parasitol. 127:627–636
  • Alvar, J., Velez, I. D., Bern, C., et al. 2012. Leishmaniasis worldwide and global estimates of its incidence. PloS One. 7:e35671
  • Asgarian-Omran, H., Amirzargar, A. A., Zeerleder, S., et al. 2014. Interaction of Bordetella pertussis filamentous hemagglutinin with human TLR2: Identification of the TLR2-binding domain. APMIS 2:156–162
  • Bankovich, A. J., Shiow, L. R., and Cyster, J. G. 2010. CD69 suppresses sphingosine-1-phosphate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 285:22328–22337
  • Becker, I., Salaiza, N., Aguirre, M., et al. 2003. Leishmania lipophosphoglycan (LPG) activates NK cells through TLR2. Mol. Biochem. Parasitol. 130:65–74
  • Croft, S. L., Sundar, S., and Fairlamb, A. H. 2006. Drug resistance in leishmaniasis. Clin. Microbiol. Rev. 19:111–126
  • de Veer, M. J., Curtis, J. M., Baldwin, T. M., et al. 2003. MyD88 is essential for clearance of Leishmania major: Possible role for lipophosphoglycan and TLR2 signaling. Eur. J. Immunol. 33:2822–2831
  • Descoteaux, A., Avila, H. A., Zhang, K., et al. 2002. Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J. 21:4458–4469
  • Faria, M. S., Reis, F. C., and Lima, A. P. 2012. Toll-like receptors in Leishmania infections: Guardians or promoters? J. Parasitol. Res. 12:930257–930269
  • Fields, P. E., Kim, S. T., and Flavell, R. A. 2002. Cutting edge: Changes in histone acetylation at the IL-4 and IFNγ loci accompany TH1/TH2 differentiation. J. Immunol. 169:647–650
  • Franco, L. H., Beverley, S. M., and Zamboni, D. S. 2012. Innate immune activation and subversion of mammalian functions by Leishmania lipophosphoglycan. J. Parasitol. Res. 16:165126–165137
  • Glushkova, O. V., Parfenyuk, S. B., Khrenov, M. O., et al. 2013. Inhibitors of TLR4, NF-κB, and SAPK/JNK signaling reduce the toxic effect of lipopolysaccharide on RAW 264.7 cells. J. Immunotoxicol. 10:133–140
  • Kedzierski, L., Zhu, Y., and Handman, E. 2006. Leishmania vaccines: Progress and problems. Parasitology 133:S87–S112
  • Kishore, K., Kumar, V., Kesari, S., et al. 2006. Vector control in leishmaniasis. Indian J. Med. Res. 123:467–475
  • Kropf, P., Freudenberg, M. A., Modolell, M., et al. 2004. TLR4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect. Immun. 72:1920–1928
  • Lancioni, C. L., Thomas, J. J., and Rojas, R. E. 2009. Activation requirements and responses to TLR ligands in human CD4+ T-cells: Comparison of two T-cell isolation techniques. J. Immunol. Meth. 344:15–25
  • Larreta, R., Guzman, F., Patarroyo, M. E., et al. 2002. Antigenic proper-ties of Leishmania infantum GRP94 and mapping of linear B-cell epitopes. Immunol. Lett. 80:199–205
  • Larreta, R., Soto, M., Alonso, C., and Requena, J. M. 2000. Leishmania infantum: Gene cloning of the GRP94 homologue, its expression as recombinant protein, and analysis of antigenicity. Exp. Parasitol. 96:108–115
  • Matsumoto, Y., Horiike, S., Ohshiro, M., et al. 2010. Expression of master regulators of helper T-cell differentiation in peripheral T-cell lymphoma, not otherwise specified, by immuno-histochemical analysis. Am. J. Clin. Pathol. 133:281–290
  • McMahon-Pratt, D., and Alexander, J. 2004. Does the Leishmania major paradigm of pathogene-sis and protection hold for New World cutaneous leishmaniases or the visceral disease? Immunol. Rev. 201:206–224
  • Murray H. W., Berman, J. D., Davies, C. R., and Saravia, N. G. 2005. Advances in leishmaniasis. Lancet 366:1561–1577
  • Ni, M., and Lee, A. S. 2007. ER chaperones in mammalian development and human diseases. FEBS Lett. 581:3641–3651
  • Pirdel, L., Zavaran Hosseini, A., and Rasouli, M. 2014. Immune response in susceptible BALB/c mice immunized with DNA encoding lipophosphoglycan 3 of Leishmania infantum. Parasite Immunol. 36:700–707
  • Racoosin, E. L., and Beverley, S. M. 1997. Leishmania major: Promastigotes induce expression of a subset of chemokine genes in murine macrophages. Exp. Parasitol. 85:283–295
  • Seyed, N., Zahedifard, F., Safaiyan, S., et al. 2011. In silico analysis of six known Leishmania major antigens and in vitro evaluation of specific epitopes eliciting HLA-A2 restricted CD8 T-cell response. PLoS Neglected Trop. Dis. 5:e1295
  • Szabo, S. J., Sullivan, B. M., Stemmann, C., et al. 2002. Distinct effects of T-bet in TH1 lineage commitment and IFNγ production in CD4 and CD8 T-cells. Science 295:338–342
  • Tuon, F. F., Amato, V. S., Bacha, H. A., et al. 2008. Toll-like receptors and leishmaniasis. Infect. Immun. 76:866–872
  • Tuon, F. F., Fernandes, E. R., Duarte, M. I., and Amato, V. S. 2012. Expression of TLR2 and TLR4 in lesions of patients with tegumentary American leishmaniasis. Revista Inst. Med. Trop. São Paulo. 54:159–164
  • Valencia-Pacheco, G., Loría-Cervera, E. N., and Sosa-Bibiano, E. L. 2014. In situ cytokines (IL-4, IL-10, IL-12, IFNγ) and chemokines (MCP-1, MIP-1α) gene expression in human Leishmania mexicana infection. Cytokine 69:56–61
  • Yamashita, I., Nagata, T., Tada, T., and Nakayama, T. 1993. CD69 cell surface expression iden-tifies developing thymocytes which audition for T-cell antigen receptor-mediated positive selection. Intl. Immunol. 5:1139–1150
  • World Health Organization (WHO). 2015. World Health Statistics - 2015. Geneva: WHO Press
  • Yao, C., Donelson, J. E., and Wilson, M. E. 2003. The major surface protease (MSP or GP63) of Leishmania sp. Biosynthesis, regulation of expression, and function. Mol. Biochem. Parasitol. 132:1–16

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.