1,267
Views
27
CrossRef citations to date
0
Altmetric
Reviews

Cocaine, metamfetamine, and MDMA abuse: the role and clinical importance of neuroadaptation

Pages 695-708 | Received 09 Jul 2010, Accepted 13 Aug 2010, Published online: 20 Sep 2010

References

  • Hyman SE. A 28 year old man addicted to cocaine. J Am Med Assoc 2001; 286:2586–2594.
  • Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000; 25:515–532.
  • Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001; 2:119–128.
  • Koob GF, LeMoal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997; 278:52–58.
  • Hyman SE, Malenka RC. Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Neurosci 2001; 2:695–703.
  • Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 1999; 39:313–341.
  • Phillips PE, Hancock PJ, Stamford JA. Time window of autoreceptor-mediated inhibition of limbic and striatal dopamine release. Synapse 2002; 44:15–22.
  • Benoit-Marand M, Borrelli E, Gonon F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 2001; 21:9134–9141.
  • McMinn RMH. McMinn's Functional and Clinical Anatomy. London: Mosby; 1995:39–52.
  • Littleton J. Receptor regulation as a unitary mechanism for drug tolerance and physical dependence – not quite as simple as it seemed!. Addiction 2001; 96:87–101.
  • Cami J, Farre M. Drug addiction. N Engl J Med 2003; 349:975–986.
  • Contet C, Kieffer BL, Befort K. Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol 2004; 14:370–378.
  • Westfall TC, Westfall DP. Adrenergic agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2006:237–295.
  • Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002; 159:1642–1652.
  • Koob GF. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 2006; 101(Suppl 1):23–30.
  • Fleckenstein AE, Hanson GR. Impact of psychostimulants on vesicular monoamine transporter function. Eur J Pharmacol 2003; 479:283–289.
  • Volz TJ, Hanson GR, Fleckenstein AE. The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine-induced dopaminergic deficits. J Neurochem 2007; 101:883–888.
  • Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, Shelby ES, Smith CE, McHugo M, Kessler RM. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 2008; 28:14372–14378.
  • Aghajanian GK, Bunney BS. Dopamine “autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies. Naunyn Schmiedebergs Arch Pharmacol 1977; 297:1–7.
  • White FJ, Wang RY. A10 dopamine neurons: role of autoreceptors in determining firing rate and sensitivity to dopamine agonists. Life Sci 1984; 34:1161–1170.
  • Lacey MG, Mercuri NB, North RA. Dopamine acts on D2 receptors to increase potassium conductance in neurons of the rat substantia nigra zona compacta. J Physiol 1987; 392:397–416.
  • Mercuri NB, Calabresi P, Bernardi G. The electrophysiological actions of dopamine and dopaminergic durgs on neurons of the substantia nigra pars compacta and ventral tegmental area. Life Sci 1992; 51:711–718.
  • Dackis C, O'Brien C. Neurobiology of addition: treatment and public policy ramifications. Nat Neurosci 2005; 8:1431–1444.
  • Volkow ND, Fowler JS, Wang GJ. The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 2004; 47(Suppl 1):3–13.
  • Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 1993; 13:900–913.
  • Wielti P, Dickinson A, Schultz W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 2001; 412:43–48.
  • Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997; 275:1593–1599.
  • Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998; 80:1–27.
  • Kalivas PW. Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants. Drug Alcohol Depend 1995; 37:95–100.
  • Di Chiara G. Nucleus accumbens shell and core dopamine differential role in behavior and addiction. Behav Brain Res 2002; 137:75–114.
  • Bell K, Duffy P, Kalivas PW. Context-specific enhancement of glutamate transmission by cocaine. Neuropsychopharmacol 2000; 23:335–344.
  • Cornish JL, Kalivas PW. Cocaine sensitization and craving: differing roles for dopamine and glutamate in the nucleus accumbens. J Addict Dis 2001; 20:43–54.
  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP. Effect of cocaine self-administration on dopamine D2 receptors in Rhesus monkeys. Synapse 1998; 30:88–96.
  • Ritz M, Lamb R, Goldberg S, Kuhar M. Cocaine receptors on dopamine transporters are related to self administration of cocaine. Science 1987; 237:1219–1223.
  • Reisch A, Illing R, Laszig R. Immediate early gene expression invoked by electrical intracochlear stimulation in some but not all types of neurons in the rat auditory brainstem. Exp Neurol 2007; 208:193–206.
  • Kubik S, Miyashita T, Guzowski J. Using immediate-early genes to map hippocampal subregional functions. Learn Mem 2007; 14:758–770.
  • Thomas MJ, Kalivas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Brit J Pharmacol 2008; 154:327–342.
  • Zhang D, Zhang L, Lou DW, Nakabeppu Y, Zhang J, Xu M. The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. J Neurochem 2002; 82:1453–1464.
  • Xu M. c-Fos is an intracellular regulator of cocaine-induced long-term changes. Ann NY Acad Sci 2008; 1139:1–9.
  • Kindlundh-Hogberg AMS, Blomqvist A, Malki R, Schioth HB. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats. BMC Neurosci 2008; 9:1–10.
  • Yatin SM, Miller GM, Madras BK. Dopamine and norepinephrine transporter-dependent c-Fos production in vitro: relevance to neuroadaptation. J Neurosci Methods 2005; 143:69–78.
  • Volkow ND, Fowler JS, Wang GJ, Goldstein RZ. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurob of Learn Mem 2002; 78:610–624.
  • Volkow ND, Fowler JS, Wang G-J, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993; 14:169–177.
  • Volkow ND, Wang GJ, Fowler JS, Thanos P, Logan J, Gatley SJ, Gifford A, Ding Y, Wong C, Pappas N. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 2002; 46:79–82.
  • Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding Y, Pappas N, Shea C, Piscani K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 1996; 20:1594–1598.
  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding Y, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 2001; 158:2015–2021.
  • Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, Dewey SL, Logan J, Bendriem B, Christman D. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 1990; 147:719–724.
  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding Y, Pappas N. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 1999; 156:1440–1443.
  • Thanos PK, Volkow ND, Freimuth P, Umegaki H, Ikari H, Roth G, Ingram DK, Hitzemann R. Overexpression of dopamine D2 receptors reduces alcohol self administration. J Neurochemistry 2001; 78:1094–1103.
  • Chang L, Haning W. Insights from recent positron emission tomographic studies of drug abuse and dependence. Curr Opin Psychiatry 2006; 19:246–252.
  • Nader MA, Morgan D, Gage HD, Nadar SH, Calhoun TL, Buchheimer N, Ehrenkaufer R, Mach RH. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nature Neuroscience 2006; 9:1050–1055.
  • Volkow ND, Wang G-J, Fowler JS, Hitzemann R, Angrist B, Gatley SJ, Logan J, Ding Y, Pappas N. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 1999; 156:19–26.
  • Wang G-J, Volkow ND, Fowler JS, Cervany P, Hitzemann RJ, Pappas NR, Wong CT, Felder C. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 1999; 64:775–784.
  • Dackis CA, O'Brien CP. Cocaine dependence: a disease of the brain's reward centers. J Subst Abuse Treat 2001; 21:111–117.
  • Nader MA, Czoty PW. PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 2005; 162:1473–1482.
  • Itzhak Y, Achat-Mendes C. Methamphetamine and MDMA (ecstasy) neurotoxicity: ‘of mice and men’. IUBMB Life 2004; 56:249–255.
  • Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG, Lecomte T. The need for speed: an update on methamphetamine addiction. J Psychiatry Neurosci 2006; 31:301–313.
  • Mantle TJ, Tipton KF, Garrett NJ. Inhibition of monoamine oxydase by amphetamine and related compounds. Biochem Pharmacol 1976; 25:2073–2077.
  • Sulzer D, Maidment NT, Rayport S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 1993; 60:527–535.
  • Kahlig KM, Binda F, Khoshbouei H, Blakely RD, McMahon DG, Javitch JA, Galli A. Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 2005; 102:3495–3500.
  • Brown JM, Hanson GR, Fleckenstein AE. Regulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants. J Pharmacol Exp Ther 2001; 296:762–767.
  • Brown JM, Hanson GR, Fleckenstein AE. Cocaine-induced increases in vesicular dopamine uptake: role of dopamine receptors. J Pharmacol Exp Ther 2001; 298:1150–1153.
  • Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 2005; 75:406–433.
  • Knoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A. Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+- dependent mechanism. J Biol Chem 2003; 278:12070–12077.
  • Brown JM, Riddle EL, Sandoval V, Weston RK, Hanson JE, Crosby MJ, Ugarte YV, Gibb JW, Hanson GR, Fleckenstein AE. A single methamphetamine administration rapidly decreases vesicular dopamine uptake. J Pharmacol Exp Ther 2002; 302:497–501.
  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Med 1996; 2:699–703.
  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with (C-11)-WIN-35,428. J Neurosci 1998; 18:8417–8422.
  • Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 2001; 158:1206–1214.
  • Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C, Matochik J, Kurian V, Cadet J, Kimes A, Funderburk F, London E. Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci 2004; 16:456–464.
  • Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SM, Miller E, Hitzemann R, Ding Y, Logan J. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 2001; 21:9414–9418.
  • Volkow N, Chang L, Wang GJ, Fowler JS, Ding Y, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 2001; 158:2015–2021.
  • Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 2003; 99:45–53.
  • Fitzmaurice PS, Tong J, Yazdanpanah M, Liu PP, Kalasinsky KS, Kish SJ. Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine. J Pharmacol Exp Ther 2006; 319:703–709.
  • Hirata H, Ladenheim B, Rothman RB, Epstein C, Cadet JL. Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide radicals. Brain Res 1995; 677:345–347.
  • Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 2000; 1:181–195.
  • Sanders-Bush E, Mayer SE. 5-Hydroxytryptamine (serotonin): receptor agonists and antagonists. In: Brunton LL, Lazo JS, Parker KL, eds. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill; 2006:297–315.
  • Ramamoorthy S, Blakely RD. Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 1999; 285:763–766.
  • Blakely RD, Berson HE, Fremeau RT, Caron MG, Peek MM, Prince HK, Bradley CC. Cloning and expression of a functional serotonin transporter from rat brain. Nature 1991; 354:66–70.
  • Kim D, Tolliver TJ, Huang S, Martin BJ, Andrews AM, Wichems C, Holmes A, Lesch KP, Murphy DL. Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 2005; 49:798–810.
  • Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, Murphy DL, Lanfumey L, Hamon M, Martres MP. Altered expression and functions of serotonia 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 2000; 12:2299–2310.
  • Gobbi G, Murphy DL, Lesch K, Blier P. Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 2001; 296:987–995.
  • Montanez S, Owens WA, Gould GG, Murphy DL, Daws LC. Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 2003; 86:210–219.
  • Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 2004; 140:169–181.
  • Lyvers M. Recreational ecstasy use and the neurotoxic potential of MDMA: current status of the controversy and methodological issues. Drug Alcohol Rev 2006; 25:269–276.
  • Crespi D, Mennini T, Gobbi M. Carrier-dependent and Ca2+-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylenedioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br J Pharmacol 1997; 121:1735–1743.
  • Iravani MM, Asari D, Patel J, Wieczorek WJ, Kruk ZL. Direct effects of 3,4-methylenedioxymethamphetamine (MDMA) on serotonin or dopamine release and uptake in the caudate putamen, nucleus accumbens, substantia nigra pars reticulate, and the dorsal raphe nucleus slices. Synapse 2000; 36:275–285.
  • Stone DM, Johnson M, Hanson GR, Gibb JW. Acute inactivation of tryptophan hydroxylase by amphetamine analogs involves the oxidation of sulfohydryl sites. Eur J Pharmacol 1989; 172:93–97.
  • Fischer C, Hatzidimitriou J, Wlos J, Katz J, Ricaurte G. Reorganization of ascending 5-HT axon projections in animals previously exposed to the recreational drug (+-) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) J Neurosci 1995; 15:5476–5485.
  • Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacol Rev 2003; 55:463–508.
  • Ricaurte G, Bryan G, Strauss L, Seiden L, Schuster C. Hallucinogenic amphetamine selectively destroys brain serotonin nerve terminals. Science 1985; 229:986–988.
  • Ricaurte G, DeLanney L, Irwin I, Langston J. Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration. Brain Res 1988; 446:165–168.
  • Commins DL, Vosner G, Virus R, Woolverton WL, Schuster CR, Seiden LS. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 1987; 241:338–345
  • Callahan BT, Cord BJ, Ricaurte GA. Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine. Synapse 2001; 40:113–121.
  • Ricaurte GA, Forno LS, Wilson ME, DeLanney LE, Irwin I, Molliver ME, Langston JW. MDMA selectively damages central serotonergic neurons in the primate. JAMA 1988; 260:51–55.
  • Wilson MA, Ricaurte GA, Molliver ME. Distinct morphologic classes of serotonergic axons in primates exhibit differential vulnerability to the psychotropic drug 3,4-methylenedioxymethamphetamine. Neuroscience 1989; 28:121–137.
  • O'Hearn E, Battaglia G, De Souza EB, Kuhar MJ, Molliver ME. Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity. J Neurosci 1988; 8:2788–2803.
  • Axt KJ, Mamounas LA, Molliver ME. Structural features of amphetamine neurotoxicity in the brain. In: Cho AK, Segal DS, eds. Amphetamine and its Analogs. San Diego: Academic Press; 1994:315–367.
  • Ricaurte G, DeLanney L, Wiener S, Irwin I, Langston J. 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates. Brain Res 1988; 474:359–363.
  • Sotelo C. Immunohistochemical study of short- and long-term effects of DL-fenfluramine on the serotonergic innervations of the rat hippocampal formation. Brain Res 1991; 541:309–326.
  • Scanzello CR, Hatzidimitriou G, Martello A, Katz J, Ricaurte GA. Serotonergic recovery after (+-) 3,4-methylenedioxymethamphetamine injury: observations in rats. J Pharmacol Exp Ther 1993; 264:1484–1491.
  • Fracasso C, Guiso G, Confalonieri S, Bergami A, Garattini S, Caccia S. Depletion and time course of recovery of brain serotonin after repeated subcutaneous dexfenfluramine in the mouse. A comparison with the rat. Neuropharmacology 1995; 34:1653–1659.
  • Lew R, Sabol KE, Chou C, Vosmer GL, Richards J, Seiden LS. Methylenedioxymethamphetamine-induced serotonin deficits are followed by partial recovery over a 52-week period. II. Radioligand binding and autoradiography studies. J Pharmacol Exp Ther 1996; 276:855–865.
  • Battaglia G, Yeh SY, DeSouza EB. MDMA-induced neurotoxicity: parameters of degeneration and recovery. Pharmacol Biochem Behav 1988; 29:269–274.
  • Molliver ME, Berger UV, Mamounas LA Molliver DC, O'Hearn E, Wilson MA. Neurotoxicity of MDMA and related compounds: anatomic studies. Ann NY Acad Sci 1990; 600:640–661.
  • Hatzidimitriou G, McCann UD, Ricaurte GA. Altered serotonin innervations patterns in the forebrain of monkeys treated with (+-)3,4-methylenedioxymethamphetamine seven years previously: factors influencing abnormal recovery. J Neurosci 1999; 19:5096–5107.
  • Wang X, Baumann MH, Xu H, Rothman RB. 3,4-methylenedioxymethamphetamine (MDMA) administration to rats decreaseas brain tissue serotonin but not serotonin transporter protein and glial fibrillary acidic protein. Synapse 2004; 53:240–248.
  • O'Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1994; 270:741–751.
  • Bendotti C, Baldessari S, Pende M, Tarizzo G, Miari A, Presti ML, Mennini T, Samanin R. Does GFAP mRNA and mitochondrial benzodiazepine receptor binding detect serotonergic neuronal degeneration in rat?. Brain Res Bull 1994; 34:389–394.
  • Rowland NE, Kalehua AN, Li BH, Semple-Rowland SL, Streit WJ. Loss of serotonin uptake sites and immunoreactivity after dexfenfluramine occur without parallel glial cell reactions. Brain Res 1993; 624:35–43.
  • McCann UD, Seiden LS, Rubin LJ, Ricaurte GA. Brain serotonin neurotoxicity and fenfluramine and dexfenfluramine. Reply (Letter). J Am Med Assoc 1997b; 278:2131–2142.
  • Gordon CJ, Fogelson L. Metabolic and thermoregulatory responses of the rat maintained in acrylic or wire-screen cages: implications for pharmacological studies. Physiol Behav 1994; 56:73–79.
  • Malberg JE, Seiden LS. Small changes in ambient temperature cause large changes in 3,4-methylenedioxymethamphetamine (MDMA)-induced serotonin neurotoxicity and core body temperature in the rat. J Neurosci 1998; 18:5086–5094.
  • Broening HW, Bowyer JF, Slikker J. Age-dependent sensitivity of rats to the long-term effects of the serotonergic neurotoxicant (±)-3, 4‐methylenedioxymethamphetamine (MDMA) correlates with the magnitude of the MDMA-induced thermal response. J Pharmacol Exp Ther 1995; 275:325–333.
  • Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (“ecstasy”). Lancet 1992; 340:384.
  • Colado MI, Williams JL, Green AR. The hyperthermic and neurotoxic effects of ‘ecstasy’ (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the ark agouti (DA) rat, a model of the CPY2D6 poor metabolizer phelotype. Br J Pharmacol 1995; 115:1281–1289.
  • Scheffel U, Lever JR, Stathis M, Ricaurte GA. Repeated administration of MDMA causes transient downregulation of serotonin 5-HT2 receptors. Neuropharmacology 1992; 31:881–893.
  • Reneman L, Endert E, de Bruin K, Lavalaye J, Feenstra MG, de Wolff FA, Booij J. The acute and chronic effects of MDMA (“Ecstasy”) on cortical 5-HT2A receptor in rat and human brain. Neuropsychopharmacology 2002; 26:387–396.
  • Sharif NA, Towle AC, Burt DR, Mueller RA, Breese GR. Cotransmitters differential effects of serotonin (5-HT)-depleting drugs on levels of 5-HT and TRH and their receptors in rat brain and spinal cord. Brain Res 1989; 480:365–371.
  • Stockmeier CA, Kellar KJ. Serotonin depletion unmasks serotonergic component of [3H] dihydroalprenolol binding in rat brain. Mol Pharmacol 1989; 36:903–911.
  • Price LH, Malison RT, McDougle CJ, McCane-Katz EF, Owen KR, Heninger GR. Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology 1997; 17:342–350.
  • Xie T, Tong L, McLane MW Hatzidimitriou G, Yuan J, McCann U, Ricaurte G. Loss of serotonin transporter protein after MDMA and other ring-substituted amphetamines. Neuropsychopharmacology 2006; 31: 2639–2651.
  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA. Positron emission tomographic evidence of toxic effect of MDMA (“ecstasy”) on brain serotonin neurons in human beings. Lancet 1998a; 352:1433–1437.
  • Buchert R, Thomasius R, Wilke F, Petersen K, Nebeling B, Obrocki J, Schulze O, Schmidt U, Clausen M. A voxel-based PET investigation of the long-term effects of “Ecstasy” consumption on brain serotonin transporters. Am J Psychiatry 2004; 161:1181–1189.
  • Thomasius R, Petersen K, Buchert R, Andresen B, Zapletalova P. Mood, cognition and serotonin transporter availability in current and former ecstasy (MDMA) users. Psychopharmacology 2003; 167:85–96.
  • Buchert R, Thomasius R, Nebeling B, Petersen K, Obrocki J, Jenicke L, Wilke F, Wartberg L, Zapletalova P, Clausen M. Long-term effects of “Ecstasy” use on serotonin transporters of the brain investigated by PET. J Nucl Med 2003; 44:375–384.
  • Reneman L, Booij J, de Bruin K, Reitsma JB, de Wolff FA, Gunning WB, den Heeten GJ, van den Brink W. Effects of dose, sex and long-term abstention from use on toxic effects of MDMA (ecstasy) on brain serotonin neurons. Lancet 2001; 358:1864–1869.
  • Semple DM, Ebmeier KP, Glabus MF, O'Carroll RE, Johnstone EC. Reduced in vivo binding to the serotonin transporter in the cerebral cortex of MDMA (“ecstasy”) users. Br J Psychiatry 1999; 175:63–69.
  • Little KY, McLaughlin DP, Zhang L, Livermore CS, Dalack GW, McFinton PR, DelProposto ZS, Hill E, Cassin BJ, Watson SJ, Cook EH. Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatry 1998; 155:207–213.
  • Mash DC, Staley JK, Izenwasser S, Basille M, Ruttenber AJ. Serotonin transporters upregulate with chronic cocaine use. J Chem Neuroanat 2000; 20:271–280.
  • McQueen JK, Wilson H, Fink G. Estradiol-17β increases serotonin transporter (SERT) mRNA and the density of SERT-binding sites in female rat brain. Mol Brain Res 1997; 45:13–23.
  • Sumner BEH, Grant KE, Rosie R, Hegele-Hartung CH, Fritzemeier KH, Fink G. Effects of tamoxifen on serotonin transporter and 5-hydroxytryptamine2A receptor binding sites and mRNA levels in the brain of ovariectomized rats with or without acute estradiol replacement. Mol Brain Res 1999; 73:119–128.
  • Mann JJ, Huang Y-Y, Underwood MD, Kassir SA, Oppenheim S, Kelly TM, Dwork AJ, Arango V. A serotonin transporter gene promoter polymorphism (5-HTTLPR) and prefrontal cortical binding in major depression and suicide. Arch Gen Psychiatry 2000; 57:729–738.
  • Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Muller CR, Hamer DH, Murphy DL. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274:1527–1531.
  • Gartside SE, Cowen PJ, Sharp T. Effect of 5-hydroxy-L-tryptophan on the release of 5-HT in rat hypothalamus in vivo as measured by microdialysis. Neuropharmacology 1992; 31:9–14.
  • Samuvel DJ, Jayanthi LD, Bhat NR, Ramamoorthy S. A role for p38 mitogen-activated protein kinase in the regulation of the serotonin transporter: evidence for distinct cellular mechanisms involved in transporter surface expression. J Neurosci 2005; 25:29–41.
  • Whitworth TL, Herndon LC, Quick MW. Psychostimulants differentially regulate serotonin transporter expression in thalamocortical neurons. J Neurosci 2001; 21(RC192):1–6.
  • Yu A, Yang J, Pawlyk AC, Tujani-Butt SM. Acute depletion of serotonin down-regulates serotonin transporter mRNA in raphe neurons. Brain Res 1995; 688:209–212.
  • Bhattachary S, Powell JH. Recreational use of MDMA or ‘ecstasy’: evidence for cognitive impairment. Psychol Med 2001; 31:647–658.
  • Hanson KL, Luciana M. Neurocognitive function in users of MDMA: the importance of clinically significant patterns of use. Psychol Med 2004; 34:229–246.
  • Morgan MJ, McFie L, Fleetwood LH, Robinson JA. Ecstasy (MDMA): are the psychological problems associated with its use reversed by prolonged abstinence?. Psychopharmacology 2002; 159:294–303.
  • Heffernan TM, Jarvis H, Rodgers J, Scholey AB, Ling J. Prospective memory, everyday cognitive failure and central executive function in recreational users of Ecstasy. Hum Psychopharmacol Clin Exp 2001; 16:607–612.
  • Halpern JH, Pope HG, Sherwood AR, Barry S, Hudson JI, Yurgelun-Todd D. Resudual neuropsychological effects of illicit 3,4-methylenedioxymethamphetamine (MDMA) in individuals with minimal exposure to other drugs. Drug Alcohol Depend 2004; 75:135–147.
  • Schifano F, Di Furia L, Forza G, Minicuci N, Bricolo R. MDMA (“ecstasy”) consumption in the context of polydrug abuse: a report on 150 patients. Drug Alcohol Depend 1998; 52:85–90.
  • Pedersen W, Skrondal A. Ecstasy and new patterns of drug use: a normal population study. Addiciton 1999; 94:1695–1706.
  • Gross SR, Barrett SP, Shestowsky JS, Pihl RO. Ecstasy and drug consumption patterns: a Canadian rave population study. Can J Psychiatry 2002; 47:546–551.
  • Tribut O, Lessard Y, Reymann J, Allain H, Bentue-Ferrer D. Pharmacogenomics. Med Sci Monit 2002; 8:152–163.
  • de la Torre R, Farre M. Neurotoxicity of MDMA (ecstasy): the limitations of scaling from animals to humans. Trends Pharmacol Sci 2004; 25:505–508.
  • de la Torre R, Farre M, Ortuno J, Mas M, Brenneisen R, Roset PN, Segura J, Cami J. Non-linear pharmacokinetics of MDMA (‘ecstasy’) in humans. Br J Clin Pharmacol 2000; 49:104–109.
  • Colado MI, Williams JL, Green AR. The hyperthermic and neurotoxic effects of ‘Ecstasy’ (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol 1995; 115:1281–1289.
  • de la Torre R, Farre M, Roset PN, Pizarro N, Abanades S, Segura M, Segura J, Cami J. Human Pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit 2004; 26:137–144.
  • Ramamoorthy Y, Tyndale RF, Sellers EM. Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics 2001; 11:477–487.
  • Morgan D, Grant KA, Gage HD, Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 2002; 5:169–174.
  • Kreth K, Kovar K, Schwab M, Zanger UM. Identification of the human cytochromes P450 involved in the oxidative metabolism of “Ecstasy”-related designer drugs. Biochem Pharmacol 2000; 59:1563–1571.
  • Kish SJ. How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy?. Pharmacol Biochem Behav 2002; 71:845–855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.