1,524
Views
36
CrossRef citations to date
0
Altmetric
Review Article

Diagnosis of toxic alcohols: limitations of present methods

Pages 589-595 | Received 14 Jan 2015, Accepted 27 May 2015, Published online: 26 Jun 2015

References

  • Kraut JA, Kurtz I. Toxic alcohol ingestions:clinical features, diagnosis, and treatment. Clin J Amer Soc Nephrol 2010; 3:194–201.
  • Megarbane B, Borron SW, Baud FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intensive Care Med 2005; 31:189–195.
  • Abramson S, Singh AK. Treatment of the alcohol intoxications: ethylene glycol, methanol and isopropanol. Curr Opin Nephrol Hypertens 2000; 9:695–701.
  • Brent J. Current management of ethylene glycol poisoning. Drugs 2001; 61:979–988.
  • Kraut JA, Xing SX. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis. Am J Kidney Dis 2011; 58:480–484.
  • Haviv YS, Rubinger D, Zamir E, Safadi R. Pseudo-normal osmolal and anion gaps following simultaneous ethanol and methanol ingestion. Am J Nephrol 1998; 18:436–438.
  • Barceloux DG, Bond GR, Krenzelok EP, Cooper H, Vale JA, American Academy of Clinical Toxicology Ad Hoc Committee on the Treatment Guidelines for Methanol Poisoning. American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 2002; 40:415–446.
  • Hovda KE, Hunderi OH, Tafjord AB, Dunlop O, Rudberg N, Jacobsen D. Methanol outbreak in Norway 2002–2004: epidemiology, clinical features and prognostic signs. J Intern Med 2005; 258: 181–190.
  • McMartin KE, Wallace KB. Calcium oxalate monohydrate, a metabolite of ethylene glycol, is toxic for rat renal mitochondrial function. Toxicol Sci 2005; 84:195–200.
  • Alhamad T, Blandon J, Meza AT, Bilbao JE, Hernandez GT. Acute kidney injury with oxalate deposition in a patient with a high anion gap metabolic acidosis and a normal osmolal gap. J Nephropathol 2013; 2:139–143.
  • Chungang G, Cena TA, Li Y, McMartin KE. Calcium oxalate, and not other metabolites, is responsible for the renal toxicity of ethylene glycol. Toxicol Letters 2007; 173:8–16.
  • Besenhofer LM, McLaren MC, Latimer B, Bartels M, Filary MJ, Perala AW, McMartin KE. Role of tissue metabolite accumulation in the renal toxicity of diethylene glycol. Toxicol Sci 2011; 123:374–383.
  • Landry GM, Martin S, McMartin KE. Diglycolic acid is the nephrotoxic metabolite in diethylene glycol poisoning inducing necrosis in human proximal tubule cells in vitro. Toxicol Sci 2011; 124:35–44.
  • Barceloux DG, Krenzelok EP, Olson K, Watson W. American academy of clinical toxicology practice guidelines on the treatment of ethylene glycol poisoning. J Toxicol Clin Toxicol 1999; 37:537–560.
  • McQuade DJ, Dargan PI, Wood DM. Challenges in the diagnosis of ethylene glycol poisoning. Ann Clin Biochem 2014; 51:167–178.
  • Schwerk N, Desel H, Schulz M, Schwerk C, Kiess W, Siekmeyer W. Successful therapy of paediatric ethylene glycol poisoning: a case report and annual survey by a regional poison centre. Acta Paediatr 2007; 96:461–463.
  • Marraffa JM, Holland MG, Stork CM, Hoy CD, Hodgman MJ. Diethylene glycol: widely used solvent presents serious poisoning potential. J Emerg Med 2008; 35:401–406.
  • Schep LJ, Slaughter RJ, Temple WA, Beasley DM. Diethylene glycol poisoning. Clin Toxicol (Phila) 2009; 47:525–535.
  • Wilson KC, Reardon C, Farber HW. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med 2000; 343:815.
  • Tayar J, Jabbour G, Saggi SJ. Severe hyperosmolar metabolic acidosis due to a large dose of intravenous lorazepam. N Engl J Med 2002; 346:1253–1254.
  • Mullins ME, Barnes BJ. Hyperosmolar metabolic acidosis and intravenous Lorazepam. N Engl J Med 2002; 347:857–858.
  • Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy 2006; 26:23–33.
  • Pillai U, Hothi JC, Bhat ZY. Severe propylene glycol toxicity secondary to use of anti-epileptics. Am J Ther 2014; 21:e106–e109.
  • Hovda KE, Urdal P, Jacobsen D. Increased serum formate in the diagnosis of methanol poisoning. J Anal Toxicol 2005; 29:586–588.
  • Eder AF, McGrath CM, Dowdy YG, Tomaszewski JE, Rosenberg FM, Wilson RB et al. Ethylene glycol poisoning: toxicokinetic and analytical factors affecting laboratory diagnosis. Clin Chem 1998; 44:168–177.
  • Ehlers A, Morris C, Krasowski MD. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography. Springerplus 2013; 2:203.
  • Ferrari LA, Giannuzzi L. Clinical parameters, postmortem analysis and estimation of lethal dose in victims of a massive intoxication with diethylene glycol. Forensic Sci Int 2005; 153:45–51.
  • Alfred S, Coleman P, Harris D, Wigmore T, Stachowski E, Graudins A. Delayed neurologic sequelae resulting from epidemic diethylene glycol poisoning. Clin Toxicol 2005; 43:155–159.
  • Kapitein BS, Biesmans RS, van der Sijs HS, de Wildt SS. Propylene glycol-related delirium after esmolol infusion. Ann Pharmacother 2014; 48:940–942.
  • Hovda KE, Hunderi OH, Rudberg N, Froyshov S, Jacobsen D. Anion and osmolal gaps in the diagnosis of methanol poisoning: clinical study in 28 patients. Intensive Care Med 2004; 30:1842–1846.
  • Koga Y, Purssell RA, Lynd LD. The irrationality of the present use of the osmole gap: applicable physical chemistry principles and recommendations to improve the validity of current practices. Toxicol Rev 2004; 23:203–211.
  • Smithline N, Gardner KD Jr. Gaps - Anionic and Osmolal. JAMA 1976; 236:1594–7.
  • Sweeney TE, Beuchat CA. Limitations of methods of osmometry: measuring the osmolality of biological fluids. Am J Physiol 1993; 264:R469–R480.
  • Dorwart WV, Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin Chem 1975; 21:190–194.
  • Sklar AH, Linas SL. The osmolal gap in renal failure. Ann Intern Med 1983; 98:481–482.
  • Whittington JE, La'ulu SL, Hunsaker JJH, Roberts WL. The Osmolal gap: What has changed? Clin Chem 2010; 56:1353–1355.
  • Felton D, Ganetsky M, Berg AH. Osmolal gap without anion gap in a 43-year-old man. Clin Chem 2014; 60:446–448.
  • Steinhart B. Case report: severe ethylene glycol intoxication with normal osmolal gap--“a chilling thought”. J Emerg Med 1990; 8:583–585.
  • Schelling JR, Howard RL, Winter SD, Linas SL. Increased osmolal gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med 1990; 113:580–582.
  • McQuillen KK, Anderson AC. Osmol gaps in the pediatric population. Acad Emerg Med 1999; 6:27–30.
  • Ammar KA, Heckerling PS. Ethylene glycol poisoning with a normal anion gap caused by concurrent ethanol ingestion: Importance of the osmolal gap. Am J Kidney Dis 1996; 27:130–133.
  • Almaghamsi AM, Yeung CK. Osmolal gap in alcoholic ketoacidosis. Clin Nephrol 1997; 48:52–53.
  • Guglielminotti J, Pernet P, Maury E, Alzieu M, Vaubourdolle M, Guidet B, Offenstadt G. Osmolar gap hyponatremia in critically ill patients: evidence for the sick cell syndrome? Crit Care Med 2002; 30:1051–1055.
  • Krasowski MD, Wilcoxon RM, Miron J. A retrospective analysis of glycol and toxic alcohol ingestion: utility of anion and osmolal gaps. BMC Clin Pathol 2012; 12:1.
  • Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid-base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol 2013; 8:2018–2024.
  • Iberti TJ, Leibowitz AB, Papadakos PJ, Fischer EP. Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 1990; 18:275–277.
  • Brent J. Fomepizole for Ethylene Glycol and Methanol Poisoning. N Engl J Med 2009; 360:2216–2223.
  • McMartin KE, Sebastian CS, Dies D, Jacobsen D. Kinetics and metabolism of fomepizole in healthy humans. Clin Toxicol (Phila) 2012; 50:375–383.
  • Marraffa J, Forrest A, Grant W, Stork C, McMartin K, Howland MA. Oral administration of fomepizole produces similar blood levels as identical intravenous dose. Clin Toxicol (Phila) 2008; 46:181–186.
  • Wallace KL, Suchard JR, Curry SC, Reagan C. Diagnostic use of physicians’ detection of urine fluorescence in a simulated ingestion of sodium fluorescein-containing antifreeze. Ann Emerg Med 2001; 38:49–54.
  • Parsa T, Cunningham SJ, Wall SP, Almo SC, Crain EF. The usefulness of urine fluorescence for suspected antifreeze ingestion in children. Am J Emerg Med 2005; 23:787–792.
  • Kaufman E, Lamster IB. The diagnostic applications of saliva—a review. Crit Rev Oral Biol Med 2002; 13:197–212.
  • Smolle KH, Hofmann G, Kaufmann P, Lueger A, Brunner G. Q.E.D. Alcohol test: a simple and quick method to detect ethanol in saliva of patients in emergency departments. Comparison with the conventional determination in blood. Intensive Care Med 1999; 25:492–495.
  • Heberlein A, Lenz B, Degner D, Kornhuber J, Hillemacher T, Bleich S. Methanol levels in saliva—a non-invasive parameter that may be useful in detection of alcohol intoxication. Alcohol Alcohol 2010; 45:126–127.
  • Hack JB, Chiang WK, Howland MA, Patel H, Goldfrank LR. The utility of an alcohol oxidase reaction test to expedite the detection of toxic alcohol exposures. Acad Emerg Med 2000; 7:294–297.
  • Hack JB, Early J, Brewer KL. An alcohol oxidase dipstick rapidly detects methanol in the serum of mice. Acad Emerg Med 2007; 14:1130–1134.
  • Shin JM, Sachs G, Kraut JA. Simple diagnostic tests to detect toxic alcohol intoxications. Transl Res 2008; 152:194–201.
  • Juenke JM, Hardy L, McMillin GA, Horowitz GL. Rapid and specific quantification of ethylene glycol levels: adaptation of a commercial enzymatic assay to automated chemistry analyzers. Am J Clin Pathol 2011; 136:318–324.
  • Palatnick W, Redman LW, Sitar DS, Tenenbein M. Methanol half-life during ethanol administration - implications for management of methanol poisoning. Ann Emerg Med 1995; 26:202–207.
  • Jacobsen D, Hewlett TP, Webb R, Brown ST, Ordinario AT, McMartin KE. Ethylene-glycol intoxication - evaluation of kinetics and crystalluria. Am J Med 1988; 84:145–152.
  • Lenk W, Lohr D, Sonnenbichler J. Pharmacokinetics and biotransformation of diethylene glycol and ethylene glycol in the rat. Xenobiotica 1989; 19:961–979.
  • Speth PA, Vree TB, Neilen NF, de Mulder PH, Newell DR, Gore ME, de Pauw BE. Propylene glycol pharmacokinetics and effects after intravenous infusion in humans. Ther Drug Monit 1987; 9:255–258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.