299
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The effects of topical everolimus and sunitinib on corneal neovascularization

, , , &
Pages 97-103 | Received 06 Feb 2015, Accepted 22 Mar 2015, Published online: 13 Apr 2015

References

  • DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg 2011;37:588–598
  • Qazi Y, Wong G, Monson B, et al. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull 2010;81:198–210
  • Kvanta A. Ocular angiogenesis: the role of growth factors. Acta Ophthalmol Scand 2006;84:282–288
  • Nowak JZ, Wiktorowska-Owczarek A. Neovascularization in ocular tissues: mechanisms and role of proangiogenic and antiangiogenic factors. Klin Oczna 2004;106:90–97
  • Gan L, Fagerholm P, Palmblad J. Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in the regulation of corneal neovascularization and wound healing. Acta Ophthalmol Scand 2004;82:557–563
  • Chang JH, Garg NK, Lunde E, et al. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 2012;57:415–429
  • Benayoun Y, Casse G, Forte R, et al. Corneal neovascularization: epidemiological, physiopathological, and clinical features. J Fr Ophtalmol 2013;36:627–639
  • Lee P, Wang CC, Adamis AP. Ocular neovascularization: an epidemiologic review. Surv Ophthalmol 1998;43:245–269
  • Rajappa M, Saxena P, Kaur J. Ocular angiogenesis: mechanisms and recent advances in therapy. Adv Clin Chem 2010;50:103–121
  • Mirabelli P, Peebo BB, Xeroudaki M, et al. Early effects of dexamethasone and anti-VEGF therapy in an inflammatory corneal neovascularization model. Exp Eye Res 2014;125:118–127
  • Trikha S, Parikh S, Osmond C, et al. Long-term outcomes of Fine Needle Diathermy for established corneal neovascularisation. Brit J Ophthalmol 2014;98:454–458
  • Bucak YY, Erdurmus M, Terzi EH, et al. Inhibitory effects of topical cyclosporine A 0.05% on immune-mediated corneal neovascularization in rabbits. Graefes Arch Clin Exp Ophthalmol 2013;251:2555–2561
  • Gonzalez L, Loza RJ, Han KY, et al. Nanotechnology in corneal neovascularization therapy – a review. J Ocul Pharmacol Ther 2013;29:124–134
  • Rajappa M, Saxena P, Kaur J. Ocular angiogenesis: mechanisms and recent advances in therapy. Adv Clin Chem 2010;50:103–121
  • Keating AM, Jacobs DS. Anti-VEGF treatment of corneal neovascularization. Ocul Surf 2011;9:227–237
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014;4:64
  • Vadlapatla RK, Vadlapudi AD, Mitra AK. Hypoxia-inducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Curr Drug Targets 2013;14:919–935
  • Hasskarl J. Everolimus. Recent Res Cancer 2014;201:373–392
  • Kim S, Ding W, Zhang L, et al. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther 2014;7:719–728
  • Imbulgoda A, Heng DY, Kollmannsberger C. Sunitinib in the treatment of advanced solid tumors. Recent Res Cancer 2014;201:165–184
  • Baspinar Y, Bertelmann E, Pleyer U, et al. Corneal permeation studies of everolimus microemulsion. J Ocul Pharmacol Ther 2008;24:399–402
  • Ko BY, Kim YS, Baek SG, et al. Inhibition of corneal neovascularization by subconjunctival and topical bevacizumab and sunitinib in a rabbit model. Cornea 2013;32:689–695
  • Mahoney JM, Waterbury LD. Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res 1985;4:531–535
  • Mehrjardi HZ, Ghaffari R, Mahbod M, Hashemi H. Triamcinolone acetonide as an adjunct to bevacizumab for prevention of corneal neovascularization in a rat model. J Ophthalmic Vis Res 2014;9:162–168
  • Seo JW, Chung SH, Choi JS, Joo CK. Inhibition of corneal neovascularization in rats by systemic administration of sorafenib. Cornea 2012;31:907–912
  • Brocato J, Chervona Y, Costa M. Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 2014;85:651–657
  • Campochiaro PA. Ocular neovascularization. J Mol Med 2013;91: 311–321
  • Patel JI, Tombran-Tink J, Hykin PG, et al. Vitreous and aqueous concentrations of proangiogenic, antiangiogenic factors and other cytokines in diabetic retinopathy patients with macular edema: implications for structural differences in macular profiles. Exp Eye Res 2006;82:798–806
  • Krizova D, Vokrojova M, Liehneova K, Studeny P. Treatment of corneal neovascularization using anti-VEGF Bevacizumab. J Ophthalmol 2014;2014:178132. doi: 10.1155/2014/178132
  • Acar BT, Halili E, Acar S. The effect of different doses of subconjunctival bevacizumab injection on corneal neovascularization. Int Ophthalmol 2013;33:507–513
  • Lichtinger A, Yeung SN, Kim P, et al. Corneal endothelial safety following subconjunctival and intrastromal injection of bevacizumab for corneal neovascularization. Int Ophthalmol 2014;34:597–601
  • Öner V, Küçükerdönmez C, Akova YA, et al. Topical and subconjunctival bevacizumab for corneal neovascularization in an experimental rat model. Ophthalmic Res 2012;48:118–123
  • Kim J, Kim D, Kim ES, et al. Topically administered bevacizumab had longer standing anti-angiogenic effect than subconjunctivally injected bevacizumab in rat corneal neovacularization. Int J Ophthalmol 2013;6:588–591
  • Dastjerdi MH, Sadrai Z, Saban DR, et al. Corneal penetration of topical and subconjunctival bevacizumab. Invest Ophthalmol Vis Sci 2011;52:8718–8723
  • Kim EK, Kong SJ, Chung SK. Comparative study of ranibizumab and bevacizumab on corneal neovascularization in rabbits. Cornea 2014;33:60–64
  • Akar EE, Oner V, Küçükerdönmez C, Aydın Akova Y. Comparison of subconjunctivally injected bevacizumab, ranibizumab, and pegaptanib for inhibition of corneal neovascularization in a rat model. Int J Ophthalmol 2013;6:136–140
  • Türkcü FM, Cinar Y, Türkcü G, et al. Topical and subconjunctival ranibizumab (lucentis) for corneal neovascularization in experimental rat model. Cutan Ocul Toxicol 2014;33:138–144
  • Bradley J, Ju M, Robinson GS. Combination therapy for the treatment of ocular neovascularization. Angiogenesis 2007;10:141–148
  • Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, et al. Inhibition of corneal neovascularization by topical bevacizumab (Anti-VEGF) and Sunitinib (Anti-VEGF and Anti-PDGF) in an animal model. Am J Ophthalmol 2010;150:519–528
  • Pérez-Santonja JJ, Campos-Mollo E, Lledó-Riquelme M, et al. Vascular morphological and microdensity changes of corneal neovascularization induced by topical bevacizumab and sunitinib in an animal model. Arch Soc Esp Oftalmol 2013;88:473–481
  • Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 2011;4:51
  • Hennig M, Bauer D, Wasmuth S, et al. Everolimus improves experimental autoimmune uveoretinitis. Exp Eye Res 2012;105:43–52
  • Kim SH, Schmitt CE, Woolls MJ, et al. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development. Biochem Biophys Res Commun 2013;430:1212–1216
  • Shin YJ, Hyon JY, Choi WS, et al. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation. Invest Ophthalmol Vis Sci 2013;54:4452–4458
  • Zhong YY, Zhang HF, Zhong JX, et al. Topical dihydroartemisinin inhibits suture-induced neovascularization in rat corneas through ERK1/2 and p38 pathways. Int J Ophthalmol 2011;4:150–155

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.