244
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Cyclopiazonic acid biosynthesis by Aspergillus flavus

&
Pages 79-89 | Received 03 Feb 2011, Accepted 28 Mar 2011, Published online: 10 May 2011

References

  • Abbas HK. (2008). Non-aflatoxigenic Aspergillus flavus isolates, US Patent No 7361499.
  • Accinelli C, Saccà ML, Abbas HK, Zablotowicz RM, Wilkinson JR. (2009). Use of a granular bioplastic formulation for carrying conidia of a non-aflatoxigenic strain of Aspergillus flavus. Bioresour Technol, 100, 3997–4004.
  • Agurell S, Lindgren JE. (1968). Natural occurrence of 4-dimethylallyltryptophan-an ergot alkloid precursor. Tetrahedron Lett, 5127–5128.
  • Andreassi JL 2nd, Vetting MW, Bilder PW, Roderick SL, Leyh TS. (2009). Structure of the ternary complex of phosphomevalonate kinase: the enzyme and its family. Biochemistry, 48, 6461–6468.
  • Bamba R, Sumbali G. (2005). Co-occurrence of aflatoxin B1 and cyclopiazonic acid in sour lime (Citrus aurantifolia Swingle) during post-harvest pathogenesis by Aspergillus flavus. Mycopathologia, 159, 407–411.
  • Barros G, Torres A, Chulze S. (2005). Aspergillus flavus population isolated from soil of Argentina’s peanut growing region. Sclerotia production and toxigenic profile. J Sci Food Agric, 85, 2349–2353.
  • Blaney BJ, Kelly MA, Tyler AL, Connole MD. (1989). Aflatoxin and cyclopiazonic acid production by Queensland isolates of Aspergillus flavus and Aspergillus parasiticus. Aust J Agric Res, 40, 395–400.
  • Burdock GA, Flamm WG. (2000). Review Article: safety assessment of the mycotoxin cyclopiazonic acid. Int J Toxicol, 19, 195–218.
  • Chang PK, Horn BW, Dorner JW. (2005). Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol, 42, 914–923.
  • Chang PK, Horn BW, Dorner JW. (2009). Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol, 46, 176–182.
  • Chang PK, Ehrlich KC. (2010). What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? Int J Food Microbiol, 138, 189–199.
  • Chang PK, Ehrlich KC, Hua SS. (2006). Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. Int J Food Microbiol, 108, 172–177.
  • Christensen BE, Mollgaard H, Kaasgaard S, Lehmbeck J. (2002). Methods for producing polypeptides in Aspergillus mutant cells, US Patent No 6383781.
  • Christensen BE, Mollgaard H, Kaasgaard S, Lehmbeck J. (2007). Methods for producing polypeptides in Aspergillus mutant cells, US Patent No 7241614.
  • Cotty PJ.. (1989). Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology, 79, 808–814.
  • Cotty PJ, Cardwell KF.. (1999). Divergence of West African and North American communities of Aspergillus section Flavi. Appl Environ Microbiol, 65, 2264–2266.
  • Cvetnic Z, Pepeljnjak S. (1998). Production of cyclopiazonic acid by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Nahrung, 42, 321–323.
  • Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ. (2010). Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 27, 576–590.
  • Dorner JW. (1983). Production of cyclopiazonic acid by Aspergillus tamarii Kita. Appl Environ Microbiol, 46, 1435–1437.
  • Dorner JW, Cole RJ, Lomax LG, Gosser HS, Diener UL.. (1983). Cyclopiazonic acid production by Aspergillus flavus and its effects on broiler chickens. Appl Environ Microbiol, 46, 698–703.
  • Dorner JW, Cole RJ, Erlington DJ, Suksupath S, McDowell GH, Bryden WL.. (1994). Cyclopiazonic acid residues in milk and eggs. J Agric Food Chem, 42, 1516–1518.
  • Dorner JW. (2009a). Biological control of aflatoxin contamination in corn using a nontoxigenic strain of Aspergillus flavus. J Food Prot, 72, 801–804.
  • Dorner JW. (2009b). Development of biocontrol technology to manage aflatoxin contamination in peanuts. Peanut Sci, 36, 60–67.
  • Dorner JW, Cole RJ, Diener UL. (1984). The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid. Mycopathologia, 87, 13–15.
  • Donner M, Atehnkeng J, Sikora RA, Bandyopadhyay R, Cotty PJ.. (2010). Molecular characterization of atoxigenic strains for biological control of aflatoxins in Nigeria. Food Addit Contam, 27, 576–590.
  • Durbecq V, Sainz G, Oudjama Y, Clantin B, Bompard-Gilles C, Tricot C, Caillet J, Stalon V, Droogmans L, Villeret V. (2001). Crystal structure of isopentenyl diphosphate:dimethylallyl diphosphate isomerase. EMBO J, 20, 1530–1537.
  • Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A. (2009). Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry, 48, 4220–4230.
  • Ehrlich KC, Kobbeman K, Montalbano BG, Cotty PJ. (2007). Aflatoxin-producing Aspergillus species from Thailand. Int J Food Microbiol, 114, 153–159.
  • El-Banna AA, Pitt JI, Leistner L. (1987). Production of mycotoxins by Penicillium species. Sys Appl Microbiol, 1, 42–46.
  • El-Shanawany AA, Mostafa ME, Barakat A. (2005). Fungal populations and mycotoxins in silage in Assiut and Sohag governorates in Egypt, with a special reference to characteristic Aspergilli toxins. Mycopathologia, 159, 281–289.
  • Fitzpatrick PF. (2010). Oxidation of amines by flavoproteins. Arch Biochem Biophys, 493, 13–25.
  • Frisvad JC. (1989). The connection between the Penicillia and Aspergilli and mycotoxins with special emphasis on misidentified isolates. Arch Environ Contam Toxicol, 18, 452–467.
  • Frisvad JC, Skouboe P, Samson RA. (2005). Taxonomic comparison of three different groups of aflatoxin producers and a new efficient producer of aflatoxin B1, sterigmatocystin and 3-O-methylsterigmatocystin, Aspergillus rambellii sp. nov. Syst Appl Microbiol, 28, 442–453.
  • Gallagher RT, Richard JL, Stahr HM, Cole RJ. (1978). Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia, 66, 31–36.
  • Gebler JC, Poulter CD. (1992). Purification and characterization of dimethylallyl tryptophan synthase from Claviceps purpurea. Arch Biochem Biophys, 296, 308–313.
  • Geiser DM, Dorner JW, Horn BW, Taylor JW.. (2000). The phylogenetics of mycotoxin and sclerotium production in Aspergillus flavus and Aspergillus oryzae. Fungal Genet Biol, 31, 169–179.
  • Giorni P, Magan N, Pietri A, Bertuzzi T, Battilani P. (2007). Studies on Aspergillus section Flavi isolated from maize in northern Italy. Int J Food Microbiol, 113, 330–338.
  • Godet M, Munaut F. (2010). Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiol Lett, 304, 157–168.
  • Hayashi Y, Yoshizawa T.. (2005). Survey of cyclopiazonic acid contamination in corn from China and Southeast Asian countries. Mycotoxins, 55, 3–8.
  • Hermansen K, Frisvad JC, Emborg C, Hansen J. (1984). Cyclopiazonic acid production by submerged cultures of Penicillium and Aspergillus strains. FEMS Microbiol Lett, 21, 253–261.
  • Hesseltine CW, Shotwell OD, Smith M, Ellis JJ, Vandergraft EE, Shannon GM. (1970). Production of various aflatoxins by strains of the Aspergillus flavus series. In Toxic Microorganisms: Mycotoxin, Botulism; Herzberg M., Ed.; Proceedings of the First U.S.-Japan Conference on Toxic Microorganisms, U.S. Government Printing Office, Washington DC., 202–210.
  • Holzapfel CW. (1968). The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron, 24, 2101–2119.
  • Holzapfel CW, Wilkins DC. (1971). On the biosynthesis of cyclopiazonic acid. Phytochem, 10, 351–358.
  • Horn BW, Dorner JW. (1999). Regional differences in production of aflatoxin B1 and cyclopiazonic acid by soil isolates of Aspergillus flavus along a transect within the United States. Appl Environ Microbiol, 65, 1444–1449.
  • Ito Y, Peterson SW, Wicklo DT, Goto T. (2001). Aspergillus pseudotamarii, a new aflatoxin-producing species in Aspergillus section Flavi. Myco Res 105, 233–239.
  • Jaime-Garcia R, Cotty PJ. (2010). Influence of crop rotation on persistence of the atoxigenic strain Aspergillus flavus AF36 in Arizona. Phytopathol, 100, S55.
  • Jiang J, Yan L, Ma Z. (2009). Molecular characterization of an atoxigenic Aspergillus flavus strain AF051. Appl Microbiol Biotechnol, 83, 501–505.
  • Lansden JA, Davidson JI.. (1983). Occurrence of cyclopiazonic acid in peanuts. Appl Environ Microbiol, 45, 766–769.
  • Lee YJ, Hagler WMJ. (1991). Aflatoxin and cyclopiazonic acid production by Aspergillus flavus isolated from contaminated maize. J Food Sci, 56, 871–872.
  • Lisker N, Michaeli R, Frank ZR. (1993). Mycotoxigenic potential of Aspergillus flavus strains isolated from groundnuts growing in Israel. Mycopathologia, 122, 177–183.
  • Liu X, Walsh CT. (2009). Cyclopiazonic acid biosynthesis in Aspergillus sp.: characterization of a reductase-like R* domain in cyclopiazonate synthetase that forms and releases cyclo-acetoacetyl-L-tryptophan. Biochemistry, 48, 8746–8757.
  • Liu X, Walsh CT. (2009). Characterization of cyclo-acetoacetyl-l-tryptophan dimethylallyltransferase in cyclopiazonic acid biosynthesis: substrate promiscuity and site directed mutagenesis studies. Biochemistry, 48, 11032–11044.
  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H. (2005). Genome sequencing and analysis of Aspergillus oryzae. Nature, 438, 1157–1161.
  • Machida M, Yamada O, Gomi K. (2008). Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res, 15, 173–183.
  • McGrath RM, Steyn PS, Ferreira NP. (1973). α-acetyl-γ-(β-indolyl)methyltetramic acid. A biosynthetic intermediate of cyclopiazonic acid and of bis-secodehydrocyclopiazonic acid. J Chem Soc, Chem Commun, 21, 812–813.
  • McGrath RM, Steyn PS, Ferreira NP, Neethling DC. (1976). Biosynthesis of cyclopiazonic acids in Penicillium cyclopium: The Isolation of dimethylallylpyrophosphate: cyclo-acetoacetyltryptophanyl dimethylallyltransferase. Biorg Chem, 4, 11–23.
  • McGrath RM, Steyn PS, Nourse PN, Neethling DC, Ferreira NP. (1977). The diversion of dimethylallyl pyrophosphate from polyisoprenoid to cyclopiazonic acid in Penicillium cyclopium Westling. Biorg Chem, 6, 53–69.
  • Metzger U, Schall C, Zocher G, Unsöld I, Stec E, Li SM, Heide L, Stehle T. (2009). The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc Natl Acad Sci USA, 106, 14309–14314.
  • Mphande FA, Siame BA, Taylor JE.. (2004). Fungi, aflatoxins and cyclopiazonic acid associated with peanut retailing in Botswana. J Food Prot, 67, 96–102.
  • Norred WP, Porter JK, Dorner JW, Cole RJ.. (1988). Occurrence of the mycotoxin cyclopiazonic acid in meat after oral administration to chickens. J Agri Food Chem, 36, 113–116.
  • Novas MV, Cabral D. (2002). Association of mycotoxin and sclerotia production with compatibility groups in Aspergillus flavus from peanut in Argentina. Plant Dis, 86, 215–219.
  • Oliveira CAF, Sebastio LS, Fagundes H, Rosim RE, Fernandes AM.. (2008). Aflatoxins and cyclopiazonic acid in feed and milk from dairy farms in Sao Paulo, Brazil. Food Add Contam, 1, 147–152.
  • Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA, Bhatnagar D, Cleveland TE, Machida M, Yu J. (2006). Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol, 44 Suppl, 9–11.
  • Pildain MB, Frisvad JC, Vaamonde G, Cabral D, Varga J, Samson RA. (2008). Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. Int J Syst Evol Microbiol, 58, 725–735.
  • Pildain MB, Vaamonde G, Cabral D. (2004). Analysis of population structure of Aspergillus flavus from peanut based on vegetative compatibility, geographic origin, mycotoxin and sclerotia production. Int J Food Microbiol, 93, 31–40.
  • Pitt JI, Cruickshank RH, Leistner L. (1986). Penicillium commune, P. camembertii, the origin of white cheese moulds, and the production of cyclopiazonic acid. Food Microbiol, 3, 363–371.
  • Plieninger H, Immel H, Völkl A. (1967). [Synthesis and incorporation of a 14C-and 3H-labeled 4-dimethylallyl-tryptophan and a 14C-labeled 4-dimethylallyl-tryptamine as well as incorporation of a 14C-labelled Dimethylallyl-pyrophosphate]. Justus Liebigs Ann Chem, 706, 223–229.
  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Allameh A, Kazeroon-Shiri A, Ranjbar-Bahadori S, Mirzahoseini H, Rezaee MB. (2006). A survey on distribution of Aspergillus section Flavi in corn field soils in Iran: population patterns based on aflatoxins, cyclopiazonic acid and sclerotia production. Mycopathologia, 161, 183–192.
  • Riba A, Bouras N, Mokrane S, Mathieu F, Lebrihi A, Sabaou N. (2010). Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food Chem Toxicol, 48, 2772–2777.
  • Richard JL, Bhatnagar D, Peterson S, Sandor G. (1992). Assessment of aflatoxin and cyclopiazonic acid production by Aspergillus flavus isolates from Hungary. Mycopathologia, 120, 183–188.
  • Robbers JE, Floss HG. (1968). Biosynthesis of ergot alkaloids: formation of 4-dimethylallyltryptophan by the ergot fungus. Arch Biochem Biophys, 126, 967–969.
  • Rodrigues P, Venâncio A, Kozakiewicz Z, Lima N. (2009). A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of Aspergillus section Flavi isolated from Portuguese almonds. Int J Food Microbiol, 129, 187–193.
  • Romero SM, Comerio RM, Larumbe G, Ritieni A, Vaamonde G, Fernández Pinto V. (2005). Toxigenic fungi isolated from dried vine fruits in Argentina. Int J Food Microbiol, 104, 43–49.
  • Saito M, Tsuruta O. (1993). A new variety of Aspergillus flavus from tropical soil in Thailand and its aflatoxin productivity. Proc Jpn Assoc Mycotoxicol, 37, 31–36.
  • Sánchez-Hervás M, Gil JV, Bisbal F, Ramón D, Martínez-Culebras PV. (2008). Mycobiota and mycotoxin producing fungi from cocoa beans. Int J Food Microbiol, 125, 336–340.
  • Schabort JC, Wilkens DC, Holzapfel CW, Potgieter DJ, Neitz AW. (1971). ß-cyclopiazonate oxidocyclase from Penicillium cyclopium. I. Assay methods, isolation and purification. Biochim Biophys Acta, 250, 311–328.
  • Seshime Y, Juvvadi PR, Tokuoka M, Koyama Y, Kitamoto K, Ebizuka Y, Fujii I. (2009). Functional expression of the Aspergillus flavus PKS-NRPS hybrid CpaA involved in the biosynthesis of cyclopiazonic acid. Bioorg Med Chem Lett, 19, 3288–3292.
  • Steenkamp DJ, Schabort JC, Ferreira NP. (1973). Beta-cyclopiazonate oxidocyclase from Penicillium cyclopium. 3. Preliminary studies on the mechanism of action. Biochim Biophys Acta, 309, 440–456.
  • Steenkamp DJ, Schabort JC, Holzapfel CW, Ferreira NP. (1974). The role of essential histidines in the mechanism of catalysis of the flavoenzyme, beta-cyclopiazonate oxidocyclase. Biochim Biophys Acta, 358, 126–143.
  • Steffan N, Grundmann A, Yin WB, Kremer A, Li SM.. (2009). Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives. Curr Med Chem, 16, 218–231.
  • Tokuoka M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Koyama Y. (2008). Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet Biol, 45, 1608–1615.
  • Tominaga M, Lee YH, Hayashi R, Suzuki Y, Yamada O, Sakamoto K, Gotoh K, Akita O. (2006). Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in Aspergillus oryzae RIB strains. Appl Environ Microbiol, 72, 484–490.
  • Trucksess MW, Mislivec PB, Young K, Bruce VR, Page SW. (1987). Cyclopiazonic acid production by cultures of Aspergillus and Penicillium species isolated from dried beans, corn meal, macaroni, and pecans. J Assoc Off Anal Chem, 70, 123–126.
  • Urano T, Trucksess MW, Beaver RW, Wilson DM, Dorner JW, E.DF. (1992). Co-occurrence of cyclopiazonic acid and aflatoxins in corn and peanuts. J Off Anal Chem Int, 75, 838–841.
  • Vaamonde G, Patriarca A, Fernández Pinto V, Comerio R, Degrossi C. (2003). Variability of aflatoxin and cyclopiazonic acid production by Aspergillus section Flavi from different substrates in Argentina. Int J Food Microbiol, 88, 79–84.
  • Varga J, Frisvad JC, Samson RA. (2010). A reappraisal of fungi producing aflatoxins. World Mycotoxin J, 2, 263–277.
  • Vinokurova NG, Ivanushkina NE, Khmel’nitskaia II, Arinbasarov MU. (2007). [Synthesis of alpha-cyclopiazonic acid by fungi of the genus Aspergillus]. Prikl Biokhim Mikrobiol, 43, 486–489.
  • Widiastuti R, Maryam R, Blaney BJ, Salfina, Stoltz DR.. (1988). Cyclopiazonic acid in combination with aflatoxins, zearalenone and ochratoxin A in Indonesian corn. Mycopathologia, 104, 153–156.
  • Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, Gruber K. (2008). A concerted mechanism for berberine bridge enzyme. Nat Chem Biol, 4, 739–741.
  • Winkler A, Motz K, Riedl S, Puhl M, Macheroux P, Gruber K. (2009). Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme. J Biol Chem, 284, 19993–20001.
  • Winkler A, Puhl M, Weber H, Kutchan TM, Gruber K, Macheroux P. (2009). Berberine bridge enzyme catalyzes the six electron oxidation of (S)-reticuline to dehydroscoulerine. Phytochemistry, 70, 1092–1097.
  • Yin Y, Lou T, Yan L, Michailides TJ, Ma Z. (2009). Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol, 107, 1857–1865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.