84
Views
113
CrossRef citations to date
0
Altmetric
Research Article

Cardiotoxins from Cobra Venoms: Possible Mechanisms of Action

Pages 41-69 | Published online: 28 Sep 2008

References

  • Brunton T. L., Fayrer J. On the nature and physiological action of the poison of Naja tripudians and other Indian venomous snakes. Part 1. Proc. Roy. Soc. 1873; 21: 358
  • Elliot R. H. A contribution to the study of the action of Indian cobra venom. Phil. Trans. Roy. Soc. B 1905; 197: 361
  • Epstein D. The pharmacology of the venom of the Cape cobra (Naja flava). Quart. J. Exp. Physiol. 1930; 20: 7
  • Rogers L. The physiological action and antidotes of snake venoms with a practical method of treatment of snake bites. Lancet 1904; I: 349
  • Sarkar N. K. Isolation of cardiotoxin from cobra venom (Naja tripudians, monocellate variety). J. Ind. Chem. Soc. 1947; 24: 227
  • Sarkar N. K. Action mechanism of cobra venom, cardiotoxin and allied substances on muscle contraction. Proc. Soc. Exp. Biol. 1951; 78: 469
  • Meldrum B. S. Depolarization of skeletal muscle by a toxin from cobra (Naja naja) venom. J. Physiol. 1963; 168: 49P
  • Meldrum B. S. Actions of whole and fractionated Indian cobra (Naja naja) venom on skeletal muscle. Br. J. Pharmac. 1965; 25: 197
  • Lee C. Y., Chang C. C., Chiu T. H., Chiu P. J. S., Tseng T. C., Lee S. Y. Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn-Schmiedebergs Arch. Pharmak. 1968; 259: 360
  • Condrea E, De Vries A., Maqer J. Hemolysis and splitting of human erythrocyte phospholipids by snake venoms. Biochim. Biophys. Acta 1964; 84: 60
  • Braganca B. M., Patel N. T., Badrinath P. G. Isolation and properties of a cobra venom factor selectively toxic to Yoshida sarcoma cells. Biochim. Biophys. Acta 1967; 136: 508
  • Larsen P. R., Wolff J. Inhibition of accumulative transport by a protein from cobra venom. Biochem. Pharmac. 1967; 16: 2003
  • Larsen P. R., Wolff J. The basic proteins of cobra venom. I. The isolation and characterization of cobramines A and B. J. Biol. Chem. 1968; 243: 1283
  • Lee C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmac. 1972; 12: 265
  • Condrea E. Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experienta 1974; 30: 121
  • Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venoms. CRC Crit. Rev. Biochem. 1983; 14: 113
  • Klibansky C., London Y., Frenkel A., De Vries A. Enhancing action of synthetic and natural basic polypeptides on erythrocyte-ghost phospholipid hydrolysis by phospholipase A. Biochim. Biophys. Acta 1968; 150: 15
  • Vogt W., Patzer P., Lege L., Oldigs H.-D., Wille G. Synergism between phospholipase A and various peptides and SH-reagents in causing haemolysis. Naunyn-Schmiedebergs Arch. Pharmak. 1970; 265: 442
  • Karlsson E. Chemistry of protein toxins in snake venoms. Snake Venoms Handbook of Experimental Pharmacology, C. Y. Lee. Springer-Verlag, Berlin 1979; Vol. 52: 159
  • Muszkat K. A., Khait I., Hayashi K., Tamiya N. Photochemically induced nuclear polarization study of exposed tyrosines, tryptophans, and histidines in postsynaptic neurotoxins and in membranotoxins of elapid and hydrophid snake venoms. Biochemistry 1984; 23: 4913
  • Lankisch P. G., Lege L., Oldigs H. D., Vogt W. Binding of phospholipase A to the direct lytic factor revealed by the interaction of Ca2+ with the haemolytic effect. Biochim. Biophys. Acta 1971; 239: 267
  • Louw A. I., Visser L. The synergism of cardiotoxin and phospholipase A2 in hemolysis. Biochim. Biophys. Acta 1978; 512: 163
  • Harvey A. L., Hider R. C., Khader F. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. Biochim. Biophys. Acta 1983; 728: 215
  • Botes D. P., Viljoen C. C. The amino acid sequence of three non-curarimimetic toxins from Naja nivea venom. Biochim. Biophys. Acta 1976; 446: 1
  • Louw A. I. The purification and properties of five non-neurotoxic polypeptides from Naja mossambica mossambica venom. Biochim. Biophys. Acta 1974; 336: 470
  • Louw A. I., Visser L. Kinetics of erythrocyte lysis by snake venom cardiotoxins. Biochim. Biophys. Acta 1977; 498: 143
  • Bougis P., Tessier M., Van Rietschoten J., Rochat H., Faucon J. F., Dufourcq J. Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins. Mol. Cell. Biochem. 1983; 55: 49
  • Condrea E. Hemolytic effects of snake venoms. Snake Venoms, Handbook of Experimental Pharmacology, C. Y. Lee. Springer-Verlag, Berlin 1979; Vol. 52: 448
  • Chang C. C. The action of snake venoms on nerve and muscle. Snake Venoms, Handbook of Experimental Pharmacology, C. Y. Lee. Springer-Verlag, Berlin 1979; Vol. 52: 309
  • Chang C. C., Chuang S.-T., Lee C. Y., Wei J. W. Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom. Br. J. Pharmac. 1972; 44: 752
  • Earl J. E., Excell B. J. The effects of toxic components of Naja nivea (Cape cobra) venom on neuromuscular transmission and muscle membrane permeability. Comp. Biochem. Physiol. 1972; 41A: 597
  • Harvey A. L., Marshall R. J., Karlsson E. Effects of purified cardiotoxins from the Thailand cobra (Naja naja siamensis) on isolated skeletal and cardiac muscle preparations. Toxicon 1982; 20: 379
  • Zusman N., Cafmeyer N., Hudson R. A. Use of erythrocyte hemolysis kinetics in the purification of complex cardiotoxin mixtures. Toxicon 1982; 20: 517
  • Chen Y.-H., Hu C.-T., Yang J. T. Membrane disintegration and hemolysis of human erythrocytes by snake venom cardiotoxin (a membrane-disruptive polypeptide). Biochem. Int. 1984; 8: 329
  • Patel T. N., Braganca B. M., Bellare R. A. Changes produced by cobra venom cytotoxin on the morphology of Yoshida sarcoma cells. Exp. Cell Res. 1969; 57: 289
  • Dufourcq J., Faucon J.-F. Specific binding of a cardiotoxin from Naja mossambica mossambica to charged phospholipids detected by intrinsic fluorescence. Biochemistry 1978; 17: 1170
  • Vincent J.-P., Balerna M., Lazdunski M. Properties of association of cardiotoxin with lipid vesicles and natural membranes. FEBS Lett. 1978; 85: 103
  • Rothman J. E., Lenard J. Membrane asymmetry. Science 1977; 195: 743
  • Op den Kamp J. A.F. Lipid asymmetry in membranes. Ann. Rev. Biochem. 1979; 48: 47
  • Roelofsen B. Phospholipases as tools to study the localization of phospholipids in bioloqical membranes. A critical review. Tox. Rev. 1982; 1: 87
  • Verkleij A. J., Zwaal R. F. A., Roelofsen B., Comfurius P., Kastelijn D., Van Deenen L. L.M. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim. Biophys. Acta 1973; 323: 178
  • Chap H. J., Zwaal R. F. A., Van Deenan L. L.M. Action of highly purified phospholipases on blood platelets. Evidence for an asymmetric disribution of phospholipids in the surface membrane. Biochim. Biophys. Acta 1977; 467: 146
  • Balerna M., Fosset M., Chicheportiche R., Romey G., Lazdunski M. Constitution and properties of axonal membranes of crustacean nerves. Biochemistry 1975; 14: 5500
  • Fontaine R. N., Harris R. A., Schroeder F. Aminophospholipid asymmetry in murine synaptosomal plasma membrane. J. Neurochem. 1980; 34: 269
  • Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organisation. Quart. Rev. Biophys. 1980; 13: 121
  • Vincent J.-P., Schweitz H., Chicheportiche R., Fosset M., Balerna M., Lenoir M.-C., Lazdunski M. Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry 1976; 15: 371
  • Condrea E., Kendzersky I., De Vries A. Bindinq of Ringhals venom direct hemolytic factor to erythrocytes and osmotic ghosts of various animal species. Experientia 1965; 21: 461
  • Schroeter R., Damerau B., Vogt W. Differences in binding of the direct lytic factor (DLF) of cobra venom (Naja naja) to intact red cells and ghosts. Naunyn-Schmiedebergs Arch. Pharmak. 1973; 280: 201
  • Tazieff-Depierre F., Czajka M., Lowagie C. Action pharmacologique de fractions pures de venin de Naja nigricollis et libération de calcium dans les muscles striés. Comptes Rendus Acad. Sci. Paris D 1969; 268: 2511
  • Arms K., McPheeters D. Sensitivity of cultured embryonic heart cells to cardiooxin obtained from Naja naja siamensis venom. Toxicon 1975; 13: 333
  • Lin Shiau S. Y., Huang M. C., Lee C. Y. Mechanism of action of cobra cardiotoxin in the skeletal muscle. J. Pharmac. Exp. Ther. 1976; 196: 758
  • Wolff J., Salabe H., Ambrose M., Larsen P. R. The basic proteins of cobra venom. IT. Mechanism of action of cobramine B on thyroid tissue. J. Riol. Chem. 1968; 243: 1290
  • Condrea E., Barzilay M., De Vries A. Action of cobra venom iytic factor on sialic acid-depleted erythrocytes and ghosts. Naunyn-Schmiedebergs Arch. Pharmak. 1971; 268: 458
  • Tönsing L., Potgieter D. J.J., Louw A. I., Visser L. The binding of snake venom cardiotoxins to heart cell membranes. Biochim. Biophys. Acta 1983; 732: 282
  • Dufton M. J., Hider R. C. Snake toxin secondary structure predictions. Structure activity relationships. J. Mol. Biol. 1977; 115: 177
  • Hider R. C., Harvey A. L. The structure and actions of cardiotoxins isolated from cobra venoms. South African J. Sci. 1982; 78: 350
  • Fourie A. M., Meltzer S., Berman M. C., Louw A. I. The effect of cardiotoxin on (Ca2 + + Mg2+)-ATPase of the erythrocyte and sarcoplasmic reticulum. Biochem. Int. 1983; 6: 581
  • Hider R. C., Khader F. Biochemical and pharmacological properties of cardiotoxins isolated from cobra venom. Toxicon 1982; 20: 175
  • Lauterwein J., Wüthrich K. A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms. FEBS Lett. 1978; 93: 181
  • Bougis P., Rochat H., Piéroni G., Verger R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 1981; 20: 4915
  • Gulik-Krzywicki T., Balerna M., Vincent J.-P., Lazdunski M. Freeze-fracture study of cardiotoxin action on axonal membrane and axonal lipid vesicles. Biochim. Biophys. Acta 1981; 643: 101
  • Rivas E. A., Le Maire M., Gulik-Krzywicki T. Isolation of rhodopsin by the combined action of cardiotoxin and phospholipase A2 on rod outer segment membranes. Biochim. Biophys. Acta 1981; 644: 127
  • Zaheer A., Noronha S. H., Hospattankar A. V., Braganca B. M. Inactivation of (Na+ + K+)-stimulated ATPase by a cytotoxic protein from cobra venom in relation to its lytic effects on cells. Biochim. Biophys. Acta 1975; 394: 293
  • Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys. J. 1981; 36: 109
  • Morgan N. G., Montague W. Studies on the interaction of staphylococcal 6-haemolysin with isolated islets of Langerhans. Biochem. J. 1982; 204: 111
  • Cobbs C. S., Drzymala R. E., Shamoo A. E., Calton G. J., Burnett J. W. Sea nettle (Chrysaora quinquecirrha) lethal factor: effect on black lipid membranes. Toxicon 1983; 21: 558
  • Dubois J. M., Tanguy J., Burnett J. W. Ionic channels inducted by sea nettle toxin in the nodal membrane. Biophys. J. 1983; 42: 199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.