12
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Interaction of Presynaptically Toxic Phospholipases A2 with Membrane Receptors and Other Binding Sites

Pages 1-62 | Published online: 28 Sep 2008

References

  • Tu A. T. Handbook of Natural ToxinsReptile Venoms and Toxins. Marcel Dekker, New York 1991; Vol. 5
  • Shier W T., Mebs D. Handbook of Toxinology. Marcel Dekker, New York 1990
  • Harvey A. L. Presynaptic effects of toxins. Int. Rev. Neurobiol. 1990; 32: 201–239
  • Rosenberg P. Phospholipases. Handbook of Toxinology, W. T. Shier, D. Mebs. Marcel Dekker, New York 1990; 67
  • Hawgood B., Bon C. Snake Venom Presynaptic Toxins. Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins, A. T. Tu. Marcel Dekker, New York 1991; 3
  • Davidson F. F., Dennis E. A. Structure, Function, and Mode of Action of Snake Venom and Other Phospholipases A2. Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins, A. T. Tu. Marcel Dekker, New York 1991; 107
  • Longenecke C. L. Effects of Snake Venoms on Blood Platetets. Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins, A. T. Tu. Marcel Dekker, New York 1991; 189
  • Tu A. T. Tissue Damaging Effects by Snake Venoms: Hemorrhage and Myonecrosis. Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins, A. T. Tu. Marcel Dekker, New York 1991; 297
  • Ownby C. L. Locally acting agents: myotoxins, hemorrhagic toxins and dermonecrotic factors. Handbook of Toxinology, W. T. Shier, D. Mebs, 1990; 601–654
  • Dennis E. A. Methods Enzymol. Phospholipases 1991; Vol. 197
  • Ramirez F., Jain M. K. Phospholipase A2 at the bilayer interface. Proteins-Structure. Function and Genetics 1991; 9: 229–239
  • Takasaki C., Kimura S., Kokubun Y., Tamiya N. Isolation, properties and amino acid sequences of a phospholipase A2 and its homologue without activity from the venom of a sea snake. Laticauda colubrina, from the Solomon Islands. Biochem. J 1988; 253: 869–875
  • Rowan E. G., Harvey A L., Takasaki C., Tamiya N. Neuromuscular effect of a toxic phospholipase A2 and its nontoxic homologue from the venom of the sea snake. Laticauda colubrina Toxicon 1989; 27: 587–591
  • Rowan E. G., Harvey A. L., Takasaki C., Tamiya N. Neuromuscular effects of three phospholipases A2 from the venom of the Australian king brown snake Pseudechis australis. Toxicon 1989; 27: 551–560
  • Chwetzoff S., Tsunasawa S., Sakiyama F., Menez A. Nigexine, a phospholipase A2 from cobra venom with cytotoxic properties not related to esterase activity Purification, amino acid sequence and biological properties. J. Biol. Chem. 1989; 264: 13289–13297
  • Rowan E. G., Harvey A. L., Menez A. Neuromuscular effects of nigexine, a basic phospholipase A2 from Naja nigricollis venom. Toxicon 1991; 29: 371–374
  • Bieber A. L., Becker R R., McParland R., Hunt D. F., Shabanowitz J., Yates J. R., III., Martino P. A., Johnson G. R. The complete sequence of the acidic subunit from Mojave toxin determined by Edman degradation and mass spectrometry. Biochim. Biophys. Acta 1990; 1037: 413–421
  • Aird S. D., Kruggel W., Kaiser I. I. Amino acid sequence of the basic subunit of Mojave toxin from the venom of the Mojave rattlesnake (Crotalus s. scutulatus). Toxicon 1990; 28: 669–673
  • Aird S. D., Yates J. R., III., Martino P. A., Shabanowitz J., Hunt D. F., Kaiser I. I. The amino acid sequence of the acidic subunit β-chain of crotoxin. Biochim. Biophys. Acta 1990; 1040: 217–224
  • Pearson J. A., Tyler M. I., Retson K. V., Howden M. E. H. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). Biochim Biophys. Acta 1991; 1077: 147–150
  • Faure G., Guillaume J. L., Camoin L., Saliou B., Bon C. Multiplicity of acidic subunit isoforms of crotoxin, the phospholipase A2 neurotoxin from Crotalus durissus terrificus venom, results from posttranslational modifications. Biochemistry 1991; 30: 8074–8083
  • Pungercar J., Kordis D., Strukelj B., Liang N. S., Gubensek F. Cloning and nucleotide sequence of a cDNA encoding Ammodytoxin A, the most toxic phosphlipsse A2 from the venom of long-nosed viper (Vipera ammodytes). Toxicon 1991; 29: 269–273
  • Bouchier C., Boulain J. C., Bon C., Menez A. Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattesnake venom: the acidic non enzymatic subunit derives from a phospholipase A2-like precursor. Biochim Biophys. Acta 1991; 1088: 401–408
  • Westerlund B., Nordlund P., Uhlin U., Eaker D., Eklund H. The three-dimensional structure of notexin, a presynaptic neurotoxic phospholipase A2 at 2.0 å resolution. FEBS Lett. 1992; 301: 159–164
  • Dijkstra B. W., Kalk K. H., Hol W. G. J., Drenth J. Structure of bovine pancreatic phospholipase A2 at 1.7 å resolution. J Mol. Biol. 1981; 147: 97–123
  • Dijkstra B. W., Kalk K. H., Hol W. G. J., Orenth J. Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. J. Mol. Biol. 1983; 168: 163–179
  • Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J. Biol. Chem. 1985; 260: 11627–11634
  • White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250: 1560–1563
  • Holland D. R., Clancy L. L., Muchmore S. W., Ryde T. J., Einspahr H. M., Finzel B. C., Heinrikson R. L., Watenpaugh K. D. The crystal structure of a lysine 49 phospholipase A2 from the venom of the cottonmouth snake at 2.0 å resolution. J. Biol. Chem 1990; 265: 17649–17656
  • Tomoo K., Ohishi H., Doi M., Ishida T., Inoue M., Ikeda K., Hata Y., Semejima Y. Structure of acidic phospholipase A2 for the venom of Agkistrodon halys blomhoffii at 2.8 å resolution. Biochem. Biophys. Res. Commun. 1992; 184: 137–143
  • Chang C. C. Neurotoxins with phospholipase A2 activity in snake venoms. Proc. Natl. Sci. Counc., Rep. China 1985; 9B: 126–142
  • Harris J. B. Phospholipases in snake venoms and their effects on nerve and muscle. Pharmacol. Ther 1985; 31: 79–102
  • Chang C. C., Lee C. Y. Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn 1963; 144: 241–257
  • Hawgood B. J., Smith I. C. H. The importance of phospholipase A2 in the early induction by crotoxin of biphasic changes in end-plate potentials at the frog neuromuscular junction. Toxicon 1989; 27: 272–276
  • Rufini S., Pedersen J. Z., Desideri A., Luly P. β-Bungarotoxin-mediated liposome fusion: spectroscopic characterization by fluorescence and ESR. Biochemistry 1990; 29: 9644–9651
  • Rodrigues-Simioni L., Hawgood B. J., Smith I. C. H. Properties of the early phases of crotoxin poisoning at frog neuromuscular junctions. Toxicon 1990; 28: 1479–1489
  • Rowan E G., Pemberton K. E., Harvey A. L. On the blockade of acetylcholine-release at mouse motor-nerve terminals by β-bungarotoxin and crotoxin. Br. J. Pharmacol. 1990; 100: 301–304
  • Rosenberg P. The relationship between enzymatic activity and pharmacological properties of phospholipases in natural poisons. Natural Toxins, J. B. Harris. Clarendon Press, Oxford 1986; 129–174
  • Ghassemi A., Dhillon D. S., Rosenberg P. β-bungarotoxin-induced phospholipid hydrolysis in rat brain synaptosomes: Effect of replacement of calcium by strontium. Toxicon 1988; 26: 508–514
  • Shina R., Yates S. L., Ghassemi A., Rosenberg P., Condrea E. Inhibitory effect of EDTA'PCa2+ on the hydrolysis of synaptosomal phospholipids by phospholipase A2 toxins and enzymes. Biochem. Pharmacol 1990; 40: 2233–2239
  • Nisenbom H E., Perazzo J C., Monserrat A. J., Vidal J. C. Effect of chemical modification with p-bromophenacyl bromide on the enzymatic and lethal properties of phospholipase A2 from Bothrops allernatus (Vibora de la Cruz) venom. Toxicon 1988; 26: 1137–1144
  • Yang C. C., Chang L. S. Studies on the status of lysine residues in phospholipase A2 from Naja naja alra (Taiwan cobra) snake venom. Biochem J 1989; 262: 855–860
  • Dhillon D. S., Condrea E., Maraganore J. M., Heinrikson R L., Benjamin S., Rosenberg P. Comparison of enzymatic and pharmacological activities of lysine-49 and aspartate-49 phospholipases A2 from agkistrodon piscivorus piscivorus snake venom. Biochem Pharmacol 1987; 36: 1723–1730
  • Rosenberg P., Ghassemi A., Condrea E., Dhillon D., Yang C. H. Do chemical modifications dissociate between the enzymatic and pharmacological activities of β-bungarotoxin and notexin?. Toxicon 1989; 27: 137–159
  • Takasaki C., Sugama A., Yanagita A., Tamiya N., Rowan E. G., Harvey A. L. Effects of chemical modifications of Pa-11. a phospholipase A2 from the venom of Australian king brown snake (Pseudechis australis), on its biological activities. Toxicon 1990; 28: 107–117
  • Petersen M., Penner R., Piereau F. K., Dreyer F. β-Bungarotoxin inhibits a noninactivating potassium current in guinea-pig dorsal root ganglion neurons. Neurosci Lett 1986; 68: 141–145
  • Dreyer F., Penner R. The actions of presynaptic snake toxins on membrane currents of mouse motor nerve terminals. J. Physiol. Lond. 1987; 386: 455–463
  • Rowan E. G., Harvey A. L. Potassium channel blocking action of β-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Br J. Pharmacol 1988; 94: 839–847
  • Dreyer F. Peptide toxins and potassium channels. Rev. Physiol. Biochem Pharmacol. 1990; 115: 93–136
  • Harvey A. L., Anderson A. J., Marshall D. L., Pemberton K. E., Rowan E. G. Facilitatory neurotoxins and transmitter release. J. Toxicol -Toxin Rev. 1990; 9: 225–242
  • Strong P. N., Heuser J. E., Kelly R. B. Selective enzyme hydrolysis of nerve terminal phospholipids by β-bungarotoxin: Biochemical and morphological studies. Cellular Neurobiology, Z. Hall, R. B Kelly, C. F. Fox. Alan R. Liss, New York 1977; 227–249
  • Anderson D. C., Parsons S M. Uncoupling of cholinergic synaptic vesicles by the pre-synaptic toxin β-bungarotoxin. J. Neurochem 1986; 47: 1305–1311
  • Noremberg K., Parsons S. M. Selectivity and regulation in the phospholipase A2-mediated attack on cholinergic vesicles by β-bungarotoxin. J. Neurochem. 1986; 47: 1312–1317
  • Shier W. T. The final steps to toxic cell death. J. Toxicol Toxin Rev. 1985; 4: 191–249
  • Fletcher J. E., Rapuano B. E., Condrea E., Yang C., Ryan M., Rosenberg P. Comparison of a relatively toxic phospholipase A2 from Naja nigricollis snake venom with that of a relatively non-toxic phospholipase A2 from Hemachatus haemachatus snake venom - II Pharmacological properties in relationship to enzymatic activity. Biochem. Pharmacol. 1980; 29: 1565–74
  • Condrea E., Fletcher J. E., Rapuano B. E., Yang C. C., Rosenberg P. Dissociation of enzymatic activity from lethality and pharmacological properties by carbamylation of lysines in Naja nigricollis and Naja naja atra snake venom phospholipases A2. Toxicon 1981; 19: 705–720
  • Condrea E., Fletcher J. E., Rapuano B. E., Yang C. C., Rosenberg P. Effect of modificatin of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipases A2 from Hemachatus haemacatusand Naja naja atra snake venoms. Toxicon 1981; 19: 61–71
  • Nicholls D., Snelling R., Dolly O. Bioenergetic actions of β-bungarotoxin, dendrotoxin and bee-venom phospholipase A2 on guinea-pig synaptosomes. Biochem J 1985; 229: 653–662
  • Rugolo P., Dolly J. O., Nicholls D. G. The mechanisms of action of β-bungarotoxin at the pre-synaptic plasma membrane. Biochem. J. 1986; 233: 519–523
  • Yates S. L., Burns M., Condrea E., Ghassemi A., Shina R., Rosenberg P. Phospholipid hydrolysis and loss of membrane integrity following treatment of rat brain synaptosomes with β-bungarotoxin. notexin. and Naja naja atra and Naja nigricollis phospholipase. Toxicon 1990; 29: 939–951
  • Yates S. L., Rosenberg P. Comparative effects of phospholipase A2 neurotoxins and enzymes on membrane potential and Na+/K+ ATPase activity of rat brain synaptosomes. Toxicol. Appl. Pharmacol. 1991; 109: 207–218
  • Fletcher J. E., Middlebrook J. L. Effects of β-bungarotoxin and Naja naja atra snake venom phospholipase A2 on acetylcholine release and choline uptake in synaptosomes. Toxicon 1986; 24: 91–99
  • Jiang M., Haggblad J., Heilbronn E., Rydqvist B., Eaker D. Some biochemical characteristics and cell membrane actions of a toxic phospholipase A2 isolated from the venom of the pit viper Agkistrodon halys (Pallas). Toxicon 1987; 25: 785–792
  • Mollier P., Brochier G., Morot Gaudry-Talarmain Y. The action of notexin from tiger snake venom (Notochis s scutatus) on acetylcholine release and compartmentation in synaptosomes from electric organ of. Torpedo marmorata Toxicon 1990; 28: 267–276
  • Delot E, Bon C. Differential effects of presynaptic phospholipase A2 neurotoxins on Torpedo synaptosomes. J. Neurochem. 1992; 58: 311–319
  • Wernicke J. F., Vanker A. D., Howard B. D. The mechanism of action of β-bungarotoxin. J. Neurochem 1975; 25: 483–496
  • Martinez C., Perez-Martos A., Lopez-Perez M. J. Quantitation of the β-bngarotoxin-induced release of lactate dehydrogenase from cerebrocortical synaptosomes. Neurochem Res. 1989; 14: 865–869
  • Garcia-Garayo J. J., Cebrian J. A., Muino M. T., Lopez- Perez M. J. Phase partition of β-bungarotoxin-treated cerebrocortical synaptosomes quantitation of the toxin- vulnerable population. Res, Common. Chem. Pathol Pharmac. 1990; 68: 55–63
  • Smith C. C.T., Bradford H F, Thompson E J., MacDermot J. Actions of β-bungarotoxin on amino acid transmitter release. J. Neorochem. 1980; 34: 487–494
  • Benishin C. G. Potassium channel blockade by the B subunit of β-bungarotoxin. J. Pharmacol Exp. Ther 1990; 38: 164–169
  • Ueno E., Rosenberg P. Inhibition of phosphorylation of rat synaptosomal proteins by snake venom phospholipase A2 neurotoxins (β-bungarotoxin, notexin) and enzymes (Naja naja atra. Naja nigricollis). Toxicon 1990; 28: 1423–1437
  • Storella R J., Schouchoff A L., Fujii M, Hill J., Fletcher J. E., Jiang M S., Smith L A. Preliminary evidence for a postsynaptic action of β-bungarotoxin in mammalian skeletal muscle. Toxicon 1992; 30: 349–354
  • Chang C. C., Chen T F., Lee C. Y. Studies of the pre-synaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol Exp. Ther 1973; 184: 339–345
  • Strong P. N., Goerke J., Oberg S G., Kelly R. B. β- Bungarotoxin a presynaptic toxin with enzymatic activity. Proc. Natl Acad Sci USA 1976; 73: 178–182
  • Abe T., Limbrick A. R., Miledi R. Acute muscle denervation induced by β-bungarotoxin. Proc. R. Soc, Lond. 1976; 194: 545–553
  • Howard B. D., Truog R. Relationship between the neurotoxicity and phospholipase A activity of β-bungarotoxin. Biochemistry 1977; 16: 122–125
  • Chang O C. C., Lee J. D. Crotoxin. the neurotoxin of South American rattlesnake venoms, is a pre-synaptic toxin acting like β-bungarotoxin. Naunyn Schmiedebergs Arch Pharmacol 1977; 296: 159–168
  • Ng R. H., Howard B. D. Mitochondria and sarcoplasmic reticulum as model targets for neurotoxic and myotoxic phospholipases A2. Proc Natl. Acad Sci. USA 1980; 77: 1346–1350
  • Caratsch C. G., Maranda B., Miledi R., Strong P. N. A further study of the phospholipase-independent action of β-bungarotoxin at frog endplates. J Physiol. Lond. 1981; 319: 179–191
  • Marlas G., Bon C. Relationship between the pharmacological action of crotoxin and its phospholipase activity. Eur. J. Biochem. 1982; 125: 157–165
  • Trivedi S., Kaiser I. I., Tanaka M., Simpson L. L. Pharmacological experiments on the interaction between crotoxin and the mammatian neuromuscular junction. J. Pharmacol Exp. Ther. 1989; 251: 490–496
  • Kini R. M., Evans H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 1989; 27: 613–635
  • Freedman J. E., Snyder S. H. Vipoxina protein from Russell's viper venom with high affinity for biogenic amine receptors. J. Biol. Chem 1981; 256: 13172–13179
  • Napias C., Heilbronn E. Phospholipase A2 activity and substrate specificity of snake venom pre-synaptic toxins. Biochemistry 1980; 19: 1146–1151
  • Lunney J., Ashwell G. The effect of phospholipase on the binding of asialoglycoproteins by rat liver plasma membranes. Biochim. Biophys. Acta 1974; 367: 304–315
  • Pasternak G. W., Snyder S. H. Opiate receptor binding: Enzymatic treatments that discriminate between agonist and antagonist interactions. Molec Pharmac. 1975; 11: 478–484
  • Giambalvo C. T., Rosenberg P. The effect of phospholipases and proteases on the binding of γ-aminobutyric acid to junctional complexes of rat cerebellum. Biochim. Biophys. Acta 1976; 436: 741–756
  • Denburg J. L. Interaction of phospholipase A with an axon plasma membrane preparation. Life Sci. 1976; 18: 751–758
  • Lin H. K., Simon E. J. Phospholipase A inhibition of opiate receptor binding can be reversed by albumin. Nature 1978; 271: 383–384
  • Hanley M. R. Crotoxin effects on Torpedo californica cholinergic excitable vesicles and the role of its phospholipase A activity. Biochem. Biophys. Res. Commun. 1978; 82: 392–401
  • Okamoto H. Binding of scorpion toxin to sodium channels in vitro and its modification by p-bungarotoxin. J. Physiol. 1980; 299: 507–520
  • Goldman M. E., Pisano J. J. Inhibition of [3H] nitrendipine binding by phospholipase A2. Life Sci. 1985; 37: 1301–1308
  • Kasckow J. W., Abood L. G., Hoss W., Herndon R. M. Mechanism of Phospholipase A2 - induced conduction block in bullfrog sciatic nerve. II Biochemistry. Brain Res. 1986; 373: 392–398
  • Havoundjian H., Cohen R. M., Paul S. M., Skolnick P. Differential sensitivity of “central” and “peripheral” type benzodiazepine receptors to phospholipase A2. J. Neurochem. 1986; 46: 804–811
  • Rehm H. Molecular aspects of neuronal voltage-dependent K+ channels. Eur. J. Biochem. 1991; 202: 701–713
  • Dolly J. O. Potassium channels - what can the protein chemistry contribute. Trends Neurosci. 1988; 11: 186–188
  • Moczydlowski E., Lucchesi K., Ravindran A. An emerging pharmacology of peptide toxins targeted against potassium channels. J. Membr. Biol. 1988; 105: 95–111
  • Strong P. N. Potassium channel toxins. Pharmac Ther. 1990; 46: 137–162
  • Rehm H., Tempel B. L. Voltage-gated K+ channels of the mammalian brain. FASEB J. 1991; 5: 164–170
  • Rehm H., Betz H. Binding of β-bungarotoxin to synaptic membrane fractions of chick brain. J. Biol Chem. 1982; 257: 10015–10022
  • Othman I. B., Spokes J. W., Dolly J. O. Preparation of neurotoxic 3H-β-bungarotoxin: Demonstration of a saturable binding to brain synapses and its inhibition by toxin I. Eur J. Bichem 1982; 128: 267–276
  • Schmidt R. R., Betz H., Rehm H. Inhibition of β-bungarotoxin binding to brain membranes by mast cell degranulating peptide. toxin I. and ethylene glycol bis(β- aminoethyl ether)-N.N.N.N-tetracetic acid. Biochemistry 1988; 27: 963–967
  • Rehm H., Betz H. Solubilization and characterization of the β-bungarotoxin-binding protein of chick brain membranes. J. Biol. Chem. 1984; 259: 6865–6869
  • Tomlinson G. Inhibition of radioligand binding to receptors a competitive business. Trends pharmacol. Sci. 1988; 9: 159–162
  • Rehm H., Becker C. M. Interpreting non-competitive inhibition. Trends Pharmacol Sci 1988; 9: 316–317
  • Harvey A. L., Karlsson E. Protease inhibitor homologues from mamba venoms. Facilitation of acetylcholine release and interaction with prejunctional blocking toxins. Br. J. Pharmacol 1982; 77: 153–161
  • Rudy B. Diversity and ubiquity of K+ channels. Neurosciences 1988; 25: 729–749
  • Cook N. S. The pharmacology of potassium channels and their theraputic potential. Trends Pharmacol Sci 1988; 9: 21–28
  • Castle N. A., Haylett D. G., Jenkinson D. H. Toxins in the characterization of potassium channels. Trends Neurosci. 1989; 12: 59–65
  • Kolb H.-A. Potassium channels in excitable and non-excitable cells. Rev. Physiol. Biochem. Pharmacol. 1990; 115: 51–91
  • Lucchesi K., Moczydlowski E. Subconductance behavior in a maxi Ca2+-activated K+-channel induced by dendrotoxin I. Neuron 1990; 4: 141–148
  • Black A R., Dolly J. O. Two acceptor sub-types for dendrotoxin in chick synaptic plasma membranes distinguishable by β-bungarotoxin. Eur. J. Biochem 1986; 156: 609–617
  • Black A R., Donegan C M., Denny B J., Dolly J. O. Solubilization and physical characterization of acceptors for dendrotoxin and β-bungarotoxin from synaptic membranes of rat brain. Biochemistry 1988; 27: 6814–6820
  • Dolly J. O., Stansfeld C. E., Breeze A., Pelchen-Matthews A., Marsh S. J., Brown D A. Neuronal acceptor subtypes for dendrotoxin and their relation to K+ channels. Neurotoxins and Their Pharmacological Implications, P. Jenner. Raven Press, New York 1987; 81–86
  • Breeze A. L., Dolly J. O. Interactions between discrete neuronal membrane binding sites for the putative K+ -channel ligands β-bungarotoxin. dendrotoxin and mast-cell-degranulating peptide. Eur. J Biochem 1989; 178: 771–778
  • Stansfeld C. E., Marsh S. J., Parcej D. N., Dolly J. O., Brown D. A. Mast cell degranulation peptide and dendrotoxin selectively inhibit a fast-activating potassium current and bind to common neuronal proteins. Neuroscience 1987; 23: 893–902
  • Black A. R., Breeze A. L., Othman I. B., Dolly J. O. Involvement of neuronal acceptors for dendrotoxin in its convulsive action in rat brain. Biochem J 1986; 237: 397–404
  • Harvey A. L., Marshall D. L., De-Allie F. A., Strong P. N. Interactions between dendrotoxin. a blocker of voltage-dependent potassium channels. And charybdotoxin. a blocker of calcium-activated potassium channels. at binding sites on neuronal membranes. Biochem. Biophys Res. Commun. 1989; 163: 394–397
  • Schweitz H., Bidard J.-N., Maes P., Lazdunski M. Charybdotoxin is a new member of the K+ channel toxin family that includes dendrotoxin I and mast celldegranulating peptide. Biochemistry 1989; 28: 9708–9714
  • Vazquez J., Feigenbaum P., King V. F., Kaczorowski G. F., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. J. Biol. Chem. 1990; 265: 15564–15571
  • Oliva C., Folander K., Smith J. S. Charybdotoxin is not a high affinity blocker of shaker K+ channels expressed in Xenopus oocytes. Biophys. J. 1991; 59: 450a
  • Taylor J. W., Bidard J. N., Lazdunski M. The characterization of high-affinity binding sites in rat brain for the mast cell-degranulating peptide from bee venom using the purified monoiodinated peptide. J. Biol, Chem 1984; 259: 13957–13967
  • Bidard J.-N., Gandolfo G., Mourre C., Gottesmann C., Lazdunski M. The brain response to the bee venom peptide MCD. Activation and desensitization of ahippocampal target. Brain Res. 1987; 418: 235–244
  • Bidard J-N, Mourre C., Lazdunski M. Two potent central convulsant peptides. a bee venom toxin. the MCD peptide. and a snake venom toxin, dendrotoxin I. known to block K+-channels. have interacting receptor sites. Biochem. Biophys. Res. Commun. 1987; 143: 383–389
  • Mourre C., Bidard J. N., Lazdunski M. High-affinity receptors for the bee venom MCD peptide. Quantitative autoradiographic localization at different stages of brain development and relationship with MCD neurotoxicity. Brain Res. 1988; 446: 106–112
  • Deutsch C., Price M., Lee S., King V F., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in human T lymphocytes. J. Biol. Chem. 1991; 266: 3668–3674
  • Vazquez J., Feigenbaum P., Katz G., King V. F., Reuben J. P., Roy-Contancin L., Slaughter R. S., Kaczorowski G. J., Garcia M. L. Characterization of high affinity binding sites for charybdotoxin in sarcolemmal membranes from bovine aortic smooth muscle. J. Biol. Chem. 1989; 264: 20902–20909
  • Tzeng M C., Hseu M. J., Yang J. H., Guillory R. J. Specific binding of three neurotoxins with phospholipase A2 activity to the synaptosomal membrane preparations from the guinea pig brain. J. Protein Chem 1986; 5: 221–228
  • Hirokawa N. Characterization of various nervous tissues of the chick embryos through responses to chronic application and immunocytochemistry of β-bungarotoxin. J. Comp. Neur. 1978; 180: 449–466
  • Hirokawa N. A study of the synaptogenesis in the cerebellar cortex through chronic treatment and immunocytochemistry of β-bungarotoxin. J Comp Neur 1979; 185: 107–120
  • Othamn I. B, Wilkin G. P., Dolly J. O. Synaptic binding sites in brain for [3H]β-bungarotoxin - a specific probe that perturbs transmitter release. Neurochem. Intl. 1983; 5: 487–496
  • Dolly J. O., Halliwell J. V., Black J. D., Williams R. S., Pelchen-Matthews A., Breeze A. L., Mehraban F., Othman I. B, Black A. R. Botulinum neurotoxin and dendrotoxin as probes for studies on transmitter release. J. Physiol. Paris 1984; 79: 280–303
  • Halliwell J. V., Othman I. B., Pelchen-Matthews A., Dolly J. O. Central action of dendrotoxin Selective reduction of a transient K+ conductance in hippocampus and binding to localized acceptors. Proc Natl Acad Sci USA 1986; 83: 493–497
  • Pelchen-Matthews A., Dolly J. O. Distribution of acceptors for β-bungarotoxin in the central nervous system of the rat. Brain Res. 1988; 441: 127–138
  • Pelchen-Matthews A., Dolly J. O. Distribution in the rat central nervous system of acceptor sub-types for dendrotoxin a K+ channel probe. Neuroscience 1989; 29: 347–361
  • Bidard J-N., Mourre C., Gandolfo G., Schweitz H., Widmann C., Gottesmann C., Lazdunski M. Analogies and differences in the mode of action and properties of binding sites (localization and mutual interactions) of two K+-channel toxins. MCD peptide and dendrotoxin I. Brain Res 1989; 495: 45–57
  • Katoh-Semba R., Semba R., Kashiwamata S. Age-dependent and selective binding of β-bungarotoxin to GABAergic neurons in the rat cerebellum. Neurosci Lett 1987; 76: 32–36
  • Rehm H., Schafer T., Betz H. β-Bungarotoxin-induced cell death of neurons in chick retina. Brain Res 1982; 250: 309–319
  • Esquerda J E., Solsona C. W., Marsal J. Binding of β-bungarotoxin to Torpedo electric organ synaptosomes, A high resolution autoradiographic study. Neuroscience 1982; 7: 751–758
  • Gandolfo G., Gottesmann C., Bidard J. N., Lazdunski M. Subtypes of K+ channels differentiated by the effect of K+ -channel openers upon K+ -channel blocker-induced seizures. Brain Res 1989; 495: 189–192
  • Gandolfo G., Gottesmann C., Bidard J-N, Lazdunski M. K. channel openers prevent epilepsy induced by the bee venom peptide MCD. Eur., J. Pbarmacol. 1989; 159: 329–330
  • Heurteaux C., Lazdunski M. MCD peptide and dendrotoxin I activate C-fos and C-jun expression by acting on two different types of K+ channel opener lemakalin. Brain Res 1991; 554: 22–29
  • Benishin C. G., Sorensen R. G., Brown W. E., Krueger B. K., Blaustein M. P. Four polypeptide components of green mamba venom selectively block certain potassium channels in rat brain synaptosomes. Mol. Pharmacol 1988; 34: 152–159
  • Muniz Z. M., Diniz C. R., Dolly J. O. Characterisation of binding sites for δ-dendrotoxin in guinea-pig synaptosomes: relationship to acceptors for the K+-channel probe αdendrotoxin. J. Neurochem. 1990; 54: 343–346
  • Muniz Z. M., Tibbs G. R., Maschot P., Bougis P., Kicholls D. G., Dolly J. O. Homologues of a K+ -channel blocker δ-dendrotoxin: characterization of synaptosomal binding sites and their coupling to elevation of cytosolic free calcium concentration. Neurochem. Int. 1990; 16: 105–112
  • Awan K. A., Dolly J. O.K. channel subtypes in rat btain Vcharacteristic locations revealed using β-bungarotoxin. αdendrotoxin and δ-dendrotoxin. Neuroscience 1991; 40: 29–39
  • Brau M. E., Dreyer F., Jonas P., Repp H., Vogel W. A. K. channel in Xenopus nerve fibers selectively blocked by bee and snake toxins: binding and voltage-clamp experiments. J, Physiol. (London) 1990; 420: 365–385
  • Rehm H., Betz H. Identification by cross-linking of a β-bungarotoxin binding polypeptide in chick brain membranes. EMBO J. 1983; 2: 119–122
  • Schmidt R. R., Betz H. Cross-linking of β-bungarotoxin to chick brain membranes. Identification of subunits of a putative voltage-gated K+ -channel. Biochemistry 1989; 28: 8346–8350
  • Mehraban F., Breeze A. L., Dolly J. O. Identification by cross-linking of a neuronal acceptor protein for dendrotoxin. a convulsant polypeptide. FEBS Lett 1984; 174: 116–122
  • Rehm H., Bidard J. N., Schweitz H., Lazdunski M. The receptor site for the bee venom mast cell degranulating peptide. Affinity labeling evidence for a common molecular target for mast cell degranulating peptide and dendrotoxin I. asnake toxin active on K+ channels. Bichemistry 1988; 27: 1827–1832
  • Garcia-Calvo M., Vazquez J., Smith M., Kaczorowski G. J., Garcia M. L. Characterization of the solubilized charybdotoxin receptor from bovine aortic smooth muscle. Biochemistry 1991; 30: 11157–11164
  • Parcej D. N., Dolly J. O. Dendrotoxin acceptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels. Biochem. J 1989; 257: 899–903
  • Schmidt R. R., Betz M. The β-bungarotoxin-binding protein from chick brain. binding sites for different neuronal K+-channel ligands co-fractionate upon partial purification. FEBS Lett 1988; 240: 65–70
  • Rehm H., Lazdunski M. Existence of different populations of dendrotoxin I binding protein associated with neuronal K+ channels. Biochem Biophys. Res. Commun 1988; 153: 231–240
  • Rehm H., Lazdunski M. Purification and subunit structure of a putative K+ -channel protein identified by its binding properties for dendrotoxin I. Proc. Natl. Acad Sci. USA 1988; 85: 4919–4923
  • Scott V. E. S., Parcei D. N., Keen J. N., Findlay J. B. C., Dolly J. O. αDendrotoxin acceptor from bovine brain is a K+ channel protein. Evidence from the N-terminal sequence of its larger subunit. J. Biol. Chem. 1990; 265: 20094–20097
  • Rehm H. Enzymatic deglycosylation of the dendrotoxin-binding protein. FEBS Lett 1989; 247: 28–30
  • Rehm H., Newitt R. A., Tempel B. L. Immunological evidence for a relationship between the dendrotoxin-binding protein and the mammalian homologue of the Drosophila Shaker K+ channel. FEBS Lett 1989; 249: 224–228
  • Rehm H., Pelzer S., Cochet C., Chambaz E., Tempel B. L., Pelzer Trautwein W.D., Lazdunski M. Dendrotoxin- binding brain membrane protein displays a K+ -channel activity that is stimulated by both CAMP-dependent and endogenous phosphorylations. Biochemistry 1989; 28: 6455–6460
  • Jan L. Y., Jan Y. N. How might the diversity of potassium channels be generated?. Trends Neorosci 1990; 13: 415–419
  • Stuhmer W. Structure-function studies of voltage-gated ion channels. Ann. Rev. Biophys. Chem. 1991; 20: 65–78
  • Perney T. M., Kaczmarek L. K. The Molecular biology of K+ channels. Curr. Opin. Cell Biol. 1991; 3: 663–670
  • Mackinnon R. Using mutagenesis to study potassium channel mechanisms. J. Bioenerg. Biomembr. 1991; 23: 647–663
  • Miller C. 1990: Annus mirabilis of potassium channels. Science 1991; 252: 1092–1096
  • Jan L. Y., Jan Y. N. Structural elements involved in specific K+ channel functions. Ann. Rev. Physiol. 1992; 54: 537–555
  • Salkoff L., Baker K., Butler A., Covarrubias M., Pak M. D., Wei A. An essential 'set' of K+ channels conserved in flies, mice and humans. Trends Neorosic. 1992; 15: 161–166
  • Saliou F., Radvanyi B., Bon C., Strong P. N. The interaction between the presynaptic phospholipase neurotoxins β-bungarotoxin and crotoxin and mixed detergent - phosphatidylcho-line micelles A comparison with nonneurotoxic snake venom phospholipases A2. J. Biol. Chem. 1987; 262: 8966–8974
  • Jain M., Egmond M. R., Verheij H., Apitz-Castro R., Dijkman R., De Haas G. H. Interaction of Phospholipase A2 and phospholipid bilayers. Biochim Biophys. Acta. 1982; 688: 341–348
  • Jain M. K., Rogers J., Jahagirdar D. V., Marecek J. F., Ramirez F. Kinetics of interfacial catalysis by phospholipase A2 in intravesicie scooting mode, and heterofusion of anionic and zwitterionic vesicles. Biochim Biophys Acta 1986; 860: 435–447
  • Habermann E., Beithaupt H. The crotoxin complex is an example of biochemical and pharmacological complementation. Toxicon 1978; 16: 19–30
  • Fraenkel-Conrat H. Snake venom neurotoxins related to phospholipase A2. J. Toxicol. Toxin Rev. 1982; 1: 205–221
  • Hendon R. A., Bieber A. L. Presynaptic toxins from rattlesnake venoms. Rattlesnake venoms: Their action and treatment, A. T. Tu. Marcel Dekker, New York 1982; 211
  • Hawgood B. J. Physiological and pharmacological effects of rattlesnake venoms. Rattlesnake venoms. Their action and treatment, A. T. Tu. Marcel Dekker, New York 1982; 121
  • Bon C., Bouchier C., Choumet V., Faure G., Jiang M.-S., Lambezat M.-P., Radvanyi F., Saliou B. Crotoxin. half- century of investigations of a phospholipase A2 neurotoxin Acta physiol, pharmacol. Latino-Americano 1989; 39: 439–448
  • Bieber A. L., Mills J. P., Jr., Ziolkowski C., Harris J. Rattlesnake neurotoxins biochemical and biological aspects. J. Toxicol-Toxin Rev. 1990; 9: 285–306
  • Jeng T. W., Hendon R. A., Fraenkel-Conrat H. Search for relationship among the hemolytic. phospholipolytic and neurotoxic activities of snake venom. Proc. Natl. Acad. Sci USA 1978; 75: 600–604
  • Bon C., Changeux J. P., Jeng T. W., Fraenkel-Conrat H. Post-synaptic effects of crotoxin and of its isolated subunits. Eur. J. Biochem. 1979; 99: 471–481
  • Chang C. C., Su M. J. A study on the interaction of crotapotin with crotoxin phospholipase A2. notexin and other presynaptic neurotoxins. Br. J. Pharmacol. 1981; 73: 495–503
  • Degn L. L., Seebart C. S., Kaiser I. I. Specific binding of crotoxin to brain synaptosomes and synaptosomal membranes. Toxicon 1991; 29: 973–988
  • Canziani G., Seki C., vidal J. C. The mechanism of inhibition of phospholipase activity of crotoxin B by crotoxin A. Toxicon 1983; 21: 663–674
  • Radvanyi F., Saliou B., Lembezat M. P., Bon C. Negatively charged phospholipids, a possible target for crotoxin, a presynaptic phospholipase A2 neurotoxin. J. Neurochem. 1989; 53: 1252–1260
  • Lambeau G., Schmid-Alliana A., Lazdunski M., Barhanin J. Identification and purification of a very high affinity binding protein for toxic phospholipase A2 in skeletal muscle. J. Biol. Chem. 1990; 265: 9526–9532
  • Chang C. C., Su M. J. Mutual potentiation at nerve terminals between toxins from snake venoms which contain phospholipase A2 activity β-bungarotoxin, crotoxin, taipoxin. Toxicon 1980; 18: 641–648
  • Hseu M. J., Guillory R. J., Tzeng M. C. Identification of a crotoxin-binding protein in membranes from guinea pig brain by photoaffinity labeling. J. Bioenerg Biomembr. 1990; 22: 39–50
  • Yen C. H., Tzeng M. C. Identification of a new binding protein for crotoxin and other neurotoxic phospholipase A2 on brain synaptic membranes. Biochemistry 1991; 30: 11473–11477
  • Fohlman J., Eaker D., Karlsson E., Thesleff S. Taipoxinan extremely potent pre-synaptic neurotoxin from the venom of Australian snake taipan (Oxyuranus scutellatus scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur. J. Biochem. 1976; 68: 457–469
  • Hendon R. A., Tu A. T. The role of the crotoxin subunits in tropical rattlesnake neurotoxic action. Biochim. Biophys. Acta 1979; 578: 243–252
  • Hseu M. J., Yang J. H., Guillory R. J, Tzeng M. C. Characteristics of the binding of crotoxin and Mojave toxin to synaptosomal membranes from guinea pig brain. 13th International Congress of Biochemistry, Amsterdam, 1985, 143
  • Batzri-Izraeli R., Bdolah A. Isolation and characterization of the main toxic fraction from the venom of the false horned viper (Pseodocerasres fieldi). Toxicon 1982; 20: 867–875
  • Bdolah A., Kinamon S., Batzri-Izraeli R. The neurotoxic complex from the venom of Pseudocerastes fieldi Contribution of the nontoxic subunit. Biochem Int. 1985; 11: 627–636
  • Tsai M. C, Lee C Y., Bdolah A. Mode of neuromuscular blocking action of a toxic phsspholipase A2 from Pseudocerastes fieldi (Field's horned viper) snake venom. Toxicon 1983; 21: 527–534
  • Shabo-Shina R., Bdolah A. Interactions of the neurotoxic complex from the venom of the false horned viper (pseudocerastes fieldi) with rat striatal synaptosomes. Toxicon 1987; 25: 253–266
  • Harris J, Power T J., Bieber A. L., Watts A. An Electron-spin-resonance spin-label study of the interaction of purified Mojave toxin with synaptosomal membranes from rat brain. Eur J Biochem. 1983; 131: 559–565
  • Chambers J P., Wayner M J., Dungan J., Rael E D., Valdes J. The effects of purified Mojave toxin on rat synaptic membrane (Ca+2 Mg+2)-ATPase and the dihydropyridine receptor. Brain Res Bull 1986; 16: 639–643
  • Valdes J. J., Thompson R. G., Wolff V. L., Menking D. E., Rael E. D., Chambers J. P. Inhibition of calcium channel dihydropyridine receptor binding by purified Mojave toxin. Neurotoxicol Teratol 1989; 11: 129–133
  • Dowdall M. J., Fohlman J. P., Watts A. Presynaptic action of snake venom neurotoxins on cholinergic systems. Adv. Cytopharmacol. 1979; 3: 63–76
  • Cull-Candy S. G., Fohlman J., Gustavsson D., Lullmann-Rauch R., Thesleff S. The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience 1976; 1: 175–180
  • Chang C. C., Lee J. D., Eaker Fohlman D. The pre- synaptic neuromuscular blocking actions of taipoxin A comparison with β-bungarotoxin and crotoxin. Toxicon 1977a; 15: 571–576
  • Tzeng M. C., Hseu M. J., Yen C. H. Taipoxin-binding protein on synaptic membranes: Identification by affinity labeling. Biochem. Biophys. Res. Commun. 1989; 165: 689–694
  • Backstrom I. T., Ross S. B., Marcusson J. O. [3H]desipramine binding to rat brain tissue; binding to both noradrenaline uptake sites and sites not related to noradrenaline neurons. J. Neurochem 1989; 32: 1099–1106
  • Dowdall M. J., Fohlman J. P., Eaker D. Inhibition of high affinity choline transport in peripheral cholinergic endings by pre-synaptic snake venom neurotoxins. Nature 1977; 269: 700–702
  • Fohlman J., Eaker D., Dowdall M. J., Lullmann-Rauch R., Sjodin T., Leander S. Chemical modification of taipoxin and the consequences for phospholipase activity, pathophysiology, and inhibition of high-affinity choline uptake. Eur. J. Biochem. 1979; 94: 531–540
  • Sun A. Y. The effect of phospholipases on the active uptake of norepinephrine by synaptosomes isolated from the cerebral cortex of guinea pig. J. Neurochem 1974; 22: 551–556
  • Rotman A. The effect of phospholipase C. phospholipase A2 and neuraminidase on the uptake of [3H]norepinephrine and [3H]serotonin by rat brain synaptosomes. J. Neurochem 1977; 28: 1369–1372
  • Helmke S., Howard B. D. Mechanism of inhibition of calcium uptake into sarcoplasmic reticulum by notexin. a neurotoxic and myotoxic polypeptide. Memb. Biochem. 1986; 6: 239–253
  • Lambeau G., Barhanin J., Schweitz H., Oar J., Lazdunski M. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom. J. Biol. Chem 1989; 264: 11503–11510
  • Lambeau G., Barhanin J., Lazdunski M. Identification of different receptor types for toxic phospholipases A2 in rabbit skeletal muscle. FEBS Lett 1991; 293: 29–33
  • Lambeau G., Ladunski M., Barhanin J. Properties of receptors for neurotoxic phospholipases A2 in different tissues. Neurochem. Res. 1991; 16: 651–658
  • Arita H., Hanasaki K., Nakano T., Oka S., Teraoka H., Matsumoto K. Novel proliferative effect of phospholipase A2 in Swiss 3T3 cells via specific binding site. J. Biol Chem 1991; 266: 19139–19141
  • Hanasaki K., Arita H. Characterization of a high affinity binding site for pancreatic-type phospholipase A2 in the rat. J. Biol. Chem. 1992; 267: 6414–6420
  • Rapuano B. E., Yang C. C., Rosenberg P. The relationship between high-affinity noncatalytic binding of snake venom phospholipases A2 to brain synaptic plasma membranes and their central lethal potencies. Biochim. Biophys. Acra 1986; 856: 457–470
  • Ouyang C., Teng C.-M., Chen Y. C., Lin S. C. Purification and characterization of the anticoagulant principle of Trimeresurus mucrosquamatus venom. Biochim. Biophys. Acta 1978; 541: 394–407
  • Bevan P., Hiestand P. β-RTX.a receptor-active protein from Russell's viper (Vipera russelli russelli) venom. J. Biol. Chem. 1983; 258: 5319–5326
  • Slater N. T., Carpenter D. O., Freedman J E., Snyder S. H. Vipoxin both activates and antagonizes three types of acetylcholine responses in Aplysia neurons. Brain Res. 1983; 278: 266–270
  • Quik M. Binding characteristics of the bungarotoxin fraction II-S1 to rat brain membranes. Eur J. Pharmac 1985; 111: 239–244
  • Gotti C., Omini C., Berti F., Clementi F. Isolation of a polypeptide from the venom of Bungarus multicinctus that binds to ganglia and blocks the ganglionic transmission in mammals. Neuroscience 1985; 15: 563–575
  • Slater N. T., Carpenter D. O., Freedman J. E, Snyder S H. Dual effects of the snake venom polypeptide vipoxin on receptors for acetylcholine and biogenic amines in Aplysia neurons. Neuroscience 1985; 14: 723–733

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.