25
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Structure-Function Relationship of Phospholipase A2 From Snake Venoms

Pages 125-177 | Published online: 28 Sep 2008

References

  • Dennis E. A. Phospholipases. The Enzymes, P. D. Boyer. Academic Press, New York 1983; 16: 307
  • Waite M. The Phospholipases, Handbook of Lipid Research, D. Hanahan. Plenum Press, New York 1987; 5: 155
  • Joubert F. J. Naja mossambica mossambica venom. Purification, some properties and the amino acid sequences of three phospholipase A2 (CM-1, CM-11 and CM-111). Biochim. Biophys. Acta 1977; 493: 216
  • Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequence of β1-bungarotoxin from Bungarus multicinctus venom. The amino acid substitutions in the B chains. J. Biochem. 1982; 91: 1519
  • Kondo K., Toda H., Narita K., Lee C. Y. Amino acid sequence of three β-bungarotoxin (β3-, β4- and β5-bungarotoxins) from Bungarus multicinctus venom. Amino acid substitutions in the A chains. J. Biochem. 1982; 91: 1531
  • Takasaki C., Suzuki J., Tamiya N. Purification and properties of several phospholipases A2 from the venom of Australian king brown snake (Pseudechis australis). Toxicon 1990; 28: 319
  • Chang C. C. Neurotoxins with PLA2 activity in snake venoms. Proc. Natl. Sci. Counc. ROC 1985; B9: 126
  • Rosenberg P. Pharmacology of phospholipase A2 from snake venoms. Snake Venoms. Handbook of Experimental Pharmacology, C. Lee. Springer Verlag, New York 1979; 52: 403
  • Rosenberg P. Phospholipases. Handbook of Toxinology, W. T. Shier, D. Mebs. Marcel Dekker, New York 1990; 67
  • Hawgood B. J, Bon C. Snake venom presynaptic toxins. Handbook of Natural Toxins. Reptile Venoms and Toxins, A. T. Tu. Marcel Dekker, New York 1991; 5: 3
  • Tzeng M. C. Interaction of presynaptically toxic phospholipase A2 with membrane receptors and other binding sites. J. Toxicol. - Toxin Reviews 1993; 12: 1
  • Faure G., Guillaume J. L., Camoin L., Saliou B., Bon C. Multiplicity of acidic subunit isoforms of crotoxin, the phospholipase A2 neurotoxin from Crotalus durissus terrificus venom, results from posttranslational modifications. Biochemistry 1991; 30: 8074
  • Heinrikson R. L., Krueger E. T, Keim P. S. Amino acid sequence of phospholipase A2- α from the venom of Crotalus adamanteus. A new classification of phospholipases A2 based upon structural determinants. J. Biol. Chem. 1977; 252: 4913
  • Verheij H. M., Volwerk J. J., Jasen E., Puyk W. C., Dijkstra B. W., Drenth J., Haas G. H. Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. Biochemistry 1980; 19: 743
  • Renetseder R., Brunie S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J. Biol. Chem. 1985; 260: 11627
  • Halpert J., Eaker D. Isolation and amino acid sequence of a neurotoxic phospholipase A from the venom of the Australian tiger snake Notechis scutatus scutatus. J. Biol. Chem. 1976; 251: 7343
  • Ritonja A., Gubensek F. Ammodytoxin A, a highly lethal phospholipase A2 from Vipera ammodytes ammodytes venom. Biochim. Biophys. Acta 1985; 828: 306
  • Kondo K., Zhang J. K., Xu K., Kagamiyama H. Amino acid sequence of a presynaptic neurotoxin, agkistrodotoxin, from the venom of Agkistrodon halys Pallas. J. Biochem. 1989; 105: 196
  • Kondo K., Narita K., Lee C. Y. Amino acid sequences of the two polypeptide chains in β1-bungarotoxin from the venom of Bungarus multicinctus. J. Biochem. 1978; 83: 101
  • Bon C., Radvanyi F., Saliou B., Faure G. Crotoxin: a biochemical analysis of its mode of action. J. Toxicol.-Toxin Rev. 1986; 5: 125
  • Fohlman J., Eaker D., Karlsson E., Thesleff S. Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus). Isolation, characterization, quaternary structure and pharmacological properties. Eur. J. Biochem. 1976; 68: 457
  • Lind P., Eaker D. Amino acid sequence of the α-subunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus). Eur. J. Biochem. 1982; 124: 441
  • Fohlman J., Lind P., Eaker D. Taipoxin, an extremely potent presynaptic snake neurotoxin. Elucidation of the primary structure of the acidic carbohydrate-containing taipoxin-subunit, a prophospholipase homolog. FEBS Lett. 1977; 84: 367
  • Fohlman J., Eaker D., Dowdall M., Lullmann-Rauch R., Sjodin T., Leander S. Chemical modification of taipoxin and the consequences for phospholipase activity, pathophysiology, and inhibition of high-affinity choline uptake. Eur. J. Biochem. 1979; 94: 531
  • Lind P. Amino acid sequence of the β1 isosubunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus). Eur. J. Biochem. 1982; 128: 71
  • Su M. J., Coulter A. R., Sutherland S. K, Chang C. C. The presynaptic neuromuscular blocking effect and phospholipase A2 activity of textilotoxin, a potent toxin isolated from the venom of the Australian brown snake, Pseudonaja textilis. Toxicon 1983; 21: 143
  • Tyler M. I., Barnett D., Nicholson P., Spence I., Howden M. E.H. Studies on the subunit structure of textilotoxin, a potent neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). Biochim. Biophys. Acta 1987; 915: 210
  • Pearson J. A., Tyler M. I., Retson K. V, Howden M. E.H. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 2. The amino acid sequence and toxicity studies of subunit D. Biochim. Biophys. Acta 1991; 1077: 147
  • Pearson J. A., Tyler M. I., Retson K. V, Howden M. E.H. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (Pseudonaja textilis). 3. The complete amino acid sequences of all the subunits. Biochim. Biophys. Acta 1993; 1161: 223
  • Wang Y. M., Lu P. J., Ho C. L, Tsai I. H. Characterization and molecular cloning of neurotoxic phospholipase A2 from Taiwan viper (Vipera russelli formosensis). Eur. J. Biochem. 1992; 209: 635
  • Hendon R., Conrat H. Biological roles of the two components of crotoxin. Proc. Natl. Acad. Sci. USA 1971; 68: 1560
  • Delot E., Bon C. Differential effects of presynaptic phospholipase A2 neurotoxins on Torpedo synaptosomes. J. Neurochem. 1992; 58: 311
  • Bon C., Changeux J. P., Jeng T., Conrat H. Postsynaptic effects of crotoxin and its isolated subunits. Eur. J. Biochem. 1979; 99: 471
  • Choumet V., Saliou B., Fideler L., Chen Y. C., Gubensek F., Bon C., Delot E. Snake-venom phospholipase A2 neurotoxins. Potentiation of a single-chain neurotoxin by the chaperon subunit of a two-component neurotoxin. Eur. J. Biochem. 1993; 211: 57
  • Volwerk J. J., Pieterson W., Haas G. H. Histidine at the active site of phospholipase A2. Biochemistry 1974; 13: 1446
  • Karlsson E. Chemistry of protein toxin in snake venoms. Snake Venoms,Handbook of Experimental Pharmacology, C. Y. Lee. Springer Verlag, New York 1979; 52: 159
  • Yang C. C, King K. Chemical modification of the histidine residue in basic phospholipase A2 from the venom of Naja nigricollis. Biochim. Biophys. Acta 1980; 614: 373
  • Yang C. C., King K., Sun T. P. Chemical modification of lysine and histidine residues in phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). Toxicon 1981; 19: 645
  • Tsai I. H., Wu S. H, Lo T. B. Complete amino acid sequence of a phospholipase A2 from the venom of Naja naja atra (Taiwan cobra). Toxicon 1981; 19: 141
  • Pan F. M., Chang W. C., Wu S. H., Hung C. C, Chiou S. H. cDNA sequence analysis of phospholipase A2 of Taiwan cobra: Correction of published sequences determined by protein sequencing and X-ray structural analysis
  • Condrea E., Fletcher J. E., Rapuano B. E., Yang C. C, Rosenberg P. Effect of modification of one histidine residue on the enzymatic and pharmacological properties of a toxic phospholipase A2 from Naja nigricollis snake venom and less toxic phospholipase A2 from Hemachatus haemachatus and Naja naja atra snake venoms. Toxicon 1981; 19: 61
  • Halpert J., Eaker D., Karlsson E. The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS Lett. 1976; 61: 72
  • Roberts M. F., Deems R. A., Mincey T. C, Dennis E. A. Chemical modification of the histidine residue in phospholipase A2 (Naja naja naja). J. Biol. Chem. 1977; 252: 2405
  • Viljoen C. C., Visser L., Botes D. P. Histidine and lysine residues and the activity of phospholipase A2 from the venom of Bitis gabonica. Biochim. Biophys. Acta 1977; 483: 107
  • Yang C. C., King K., Sun T. P. Carbamylation with cyanate of basic phospholipase A2 from the venom of Naja nigricollis (Spitting cobra). Toxicon 1981; 19: 783
  • Condrea E., Fletcher J. E., Rapuano B. E., Yang C. C., Rosenberg P. Dissociation of enzymatic activity from lethality and pharmacological properties by carbamylation of lysines in Naja nigricollis and Naja naja atra snake venom phospholipases A2. Toxicon 1981; 19: 705
  • Condrea E., Yang C. C., Rosenberg P. Lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipase A2. Thromb. Haemost. 1981; 45: 82
  • Yang C. C. Properties of chemically modified snake venom phospholipase A2. Biochemical and Biophysical Studies of Proteins and Nucleic Acids, T. B. Lo, T. Y. Liu, C. Li. Elsevier, New York 1984; 387
  • Condrea E., Yang C. C., Rosenberg P. Additional evidence for a lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipases A2. Thromb. Haemost. 1982; 47: 298
  • Yang C. C., Chen S. F., Fan Y. C. Modification of carboxylate groups in Naja naja atra snake venom phospholipase A2. Toxicon 1983; 21(Suppl. 3)509
  • Fleer E. A.M., Verheij H., Haas G. H. Modification of carboxylate groups in bovine pancreatic phospholipase A2. Eur. J. Biochem. 1981; 113: 283
  • Dijkstra B. W., Drenth J., Kalk K. H., Vandermaelen P. J. Three-dimensional structure and dsulfide bond connections in bovine pancreatic phospholipase A2. J. Mol. Biol. 1978; 124: 53
  • Teshima K., Ikeda K., Hamaguchi K., Hayashi K. pH dependence of the binding constant of Ca2- to cobra venom phospholipase A2. J. Biochem. 1981; 89: 13
  • Schmidt R. R., Betz H. Cross-linking of β-bungarotoxin to chick brain membranes. Identification of subunits of a putative voltage-gated K+ channel. Biochemistry 1989; 28: 8346
  • Rowan E. G., Harvey A. L. Potassium channel blocking actions of β-bungarotoxin and related toxins on mouse and frog motor nerve terminals. Br. J. Pharmacol. 1988; 94: 839
  • Chang C. C., Su M. J. Mutual potentiation at nerve terminals, between toxins from snake venoms which contain phospholipase A activity: β-bungarotoxin, crotoxin, taipoxin. Toxicon 1980; 18: 641
  • Degn L. L., Seebart C. S., Kaiser I. I. Specific binding of crotoxin to brain synaptosomes and synaptosomal membranes. Toxicon 1991; 29: 973
  • Lee C. Y., Chang S. L., Kan S. T., Luh S. H. Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J. Chromatogr. 1972; 72: 71
  • Abe T., Alema S., Miledi R. Isolation and characterization of presynaptically acting neurotoxins from the venom of Bungarus snakes. Eur. J. Biochem. 1977; 80: 1
  • Kondo K., Toda H., Narita K. Characterization of phospholipase A activity of β1-bungarotoxin from Bungarus multicinctus venom. I. Its enzymatic properties and modification with p-bromophenacyl bromide. J. Biochem. 1978; 84: 1291
  • Kondo K., Toda H., Narita K. Characterization of phospholipase A activity of β1-bungarotoxin from Bungarus multicinctus venom. II. Identification of histidine residue of β1-bungarotoxin modified by p-bromophenacyl bromide. J. Biochem. 1978; 84: 1301
  • Yang C. C., Chang L. S. Tryptophan modification of phospholipase A2 enzymes and presynaptic neurotoxins from snake venoms. J. Prot. Chem. 1984; 3: 195
  • Strong P. N., Goerke J., Oberg S. G., Kelly R. B. β-Bungarotoxin, a presynaptic toxin with enzymatic activity. Proc. Natl. Acad. Sci. USA 1976; 73: 178
  • Eaker D. Studies of presynaptically neurotoxic and myotoxic phospholipase A. Versatility of Proteins, C. H. Li. Academic Press, New York 1978; 413
  • Fraenkel-Conrat H. Biological effects of phospholipase-related neurotoxins. J. Toxicol. - Toxin Rev. 1983; 1: 205
  • Dufton M. J., Hider R. C. Classification of phospholipases A2 according to sequence: Evolutionary and pharmacological implications. Eur. J. Biochem. 1983; 137: 545
  • Schmidt R. R., Betz H., Rehm H. Inhibition of β-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I and ethyleneglycol bis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid. Biochemistry 1988; 27: 963
  • Kini R. M., Iwanaga S. Structure-function relationships of phospholipases- I: Prediction of presynaptic neurotoxicity. Toxicon 1986; 24: 527
  • Benishin C. G. Potassium channel blockade by the B subunit of β-bungarotoxin. Mol. Pharmacol. 1990; 38: 164
  • Chang L. S., Yang C. C. Separation and characterization of the A chain and B chain in β1-bungarotoxin from Bungarus multicinctus (Taiwan banded krait) venom. J. Protein Chem. 1993; 12: 469
  • Chang C. C, Su M. J. Presynaptic toxicity of the histidine-modified, phospholipase A2-inactive, β-bungarotoxin, crotoxin and notexin. Toxicon 1982; 20: 895
  • Su M. J., Chang C. C. Presynaptic effects of snake venom toxins which have phospholipase A2 activity (β-bungarotoxin, taipoxin, crotoxin). Toxicon 1984; 22: 631
  • Halpert J. Structure and function of neuro- and myotoxic phospholipases: Modification with ethoxyformic anhydride of notechis II-5 from the venom of the Australian tiger snake Notechis scutatus scutatus. Advances in Cytopharmacology, B. Ceccareli, F. Clementi. Raven Press, New York 1979; 3: 45
  • Ng R. H., Howard B. D. De-energization of nerve terminals by β-bungarotoxin. Biochemistry 1978; 17: 4978
  • Ng R. H., Howard B. D. Mitochondria and sarcoplasmic reticulum as model targets for neurotoxic and myotoxic phospholipase A2. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 1346
  • Yang C. C., Lee H. J. Selective modification of tyrosine-68 in β1-bungarotoxin from the venom of Bungarus multicinctus (Taiwan banded krait). J. Prot. Chem. 1986; 5: 15
  • Mollier P., Chwetzoff S., Bouet F., Harvey A. L., Menez A. Tryptophan 110, a residue involved in the toxic activity but not in the enzymatic activity of notexin. Eur. J. Biochem. 1989; 185: 263
  • Rosenberg P. The relationship between enzymatic activity and pharmacological properties of phospholipases in natural poisons. Natural Toxins, Animal, Plant and Microbial Toxins, J. Harris. Clarendon Press, Oxford 1986; 129
  • Rosenberg P., Ghassemi A., Condrea E., Dhillon D., Yang C. C. Do chemical modifications dissociate between the enzymatic and pharmacological activities of β-bungarotoxin and notexin?. Toxicon 1989; 27: 137
  • Kini R. M., Evans H. J. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 1989; 27: 613
  • Pieterson W. A., Vidal J. C., Volwerk J., Haas G. H. Zymogen-catalyzed hydrolysis of monomeric substrates and the presence of a recognition site for lipidwater interfaces in phospholipase A2. Biochemistry 1974; 13: 1455
  • van Dam-Mieras M., Slotboom A. J., Pieterson W. A., Haas G. H. The interaction of phospholipase A2 with micellar interfaces. The role of the N-terminal region. Biochemistry 1975; 14: 5387
  • Chang L. S., Yang C. C. Role of N-terminal region of the A chain in β1-bungarotoxin from the venom of Bungarus multicincutus (Taiwan banded krait). J. Prot. Chem. 1988; 7: 713
  • Purdon A. D., Tinker D. O., Spero L. The interaction of Crotalus atrox phospholipase A2 with calcium ion and 1-anilinonaphthalene-8-sulfonate. Can. J. Biochem. 1977; 55: 205
  • van Eijk J. H., Verheij H., Haas G. H. Interaction of native and modified Naja melanoleuca phospholipase A2 with the fluorescent probe 8-anilinonaphthalene-1-sulfonate. Eur. J. Biochem. 1984; 140: 407
  • Lin W., Chen S. T. Optical activity and conformation of β-bungarotoxin in solution. Proc. Natl. Sci. Counc. ROC 1984; 8B: 113
  • Chu S. T., Chen Y. H. Role of the N-terminal region of phospholipase A2 subunit of β1-bungarotoxin in the toxin-Ca2+ complex-formation. Biochem. J. 1991; 278: 481
  • Liao T. H., Ting R. S., Yeung J. E. Reactivity of tyrosine in bovine pancreatic deoxyribonuclease with p-nitrobenzenesulfonyl fluoride. J. Biol. Chem. 1982; 257: 5637
  • Chu S. T., Chu C. C., Tsenz C. C., Chen Y. H. Met-8 of β1-bungarotoxin phospholipase A2 subunit is essential for the phospholipase A2-independent neurotoxic effect. Biochem. J.
  • Shina R., Rosenberg P., Condrea E. Differential effect of an EDTA-Ca2+ inhibitory complex on phospholipases A2 enzymes and toxins. Toxicon 1992; 30: 550
  • Shina R., Rosenberg P., Condrea E. An EDTA-Ca2+ complex inhibits the enzymatic activity but not the lethality of β-bungarotoxin. Toxicon 1992; 30: 1501
  • Shina R., Yates S. L., Ghassemi A., Rosenberg P., Condrea E. Inhibitory effect of EDTA-Ca2+ on the hydrolysis of synaptosomal phospholipids by phospholipase A2 toxins and enzymes. Biochem. Pharmac. 1990; 40: 2233
  • Halpert J., Eaker D. Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). J. Biol. Chem. 1975; 250: 6990
  • Chwetzoff S., Mollier P., Bouet F., Rowan E. G., Harvey A. L., Menez A. On the purification of notexin. Isolation of a single amino acid variant from the venom of. Notechis scutatus scutatus. FEBS Lett. 1990; 261: 226
  • Harris J. B., Karlsson E., Thesleff S. Effects of an isolated toxin from Australian tiger snake (Notechis scutatus scutatus) venom at the mammalian neuromuscular junction. Br. J. Pharmacol. 1973; 47: 141
  • Cull-Candy S., Fohlman D., Gustavsson E., Lullmann-Rauch R., Thesleff S. The effect of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neurosciences 1976; 1: 175
  • Yang C. C., Chang L. S. Dissociation of lethal toxicity and enzymatic activity of notexin from Notechis scutatus scutatus (Australian tiger snake) venom by modification of tyrosine residues. Biochem. J. 1991; 280: 739
  • White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250: 1560
  • Scott D. L., White S. P., Otwinowski Z., Yuan W., Gelb M. H., Sigler P. B. Interfacial catalysis: The mechanism of phospholipase A2. Science 1990; 250: 1541
  • Brunie S., Bolin J., Gewirth D., Sigler P. B. The refined crystal structure of dimeric phospholipase A2 at 2.5Å. J. Biol. Chem. 1985; 260: 9742
  • Yang C. C., Chang L. S. Role of N-terminal region in phospholipase A2 from Naja naja atra (Taiwan cobra) and Naja nigricollis (spitting cobra) venoms. Toxicon 1988; 26: 721
  • Yang C. C., Chang L. S. Studies on the status of lysine residues in phospholipase A2 from Naja naja atra (Taiwan cobra) snake venom. Biochem. J. 1989; 262: 855
  • Yang C. C., Chang L. S. The N-terminal amino group essential for the biological activity of notexin from Notechis scutatus scutatus venom. Biochim. Biophys. Acta 1990; 1040: 35
  • Tsai I. H., Liu H. C., Chang T. I. Toxicity domain in presynaptically toxic phospholipase A2 of snake venom. Biochim. Biophys. Acta 1987; 916: 94
  • Mancheva I., Kleinschmidt T., Aleksiev B., Braunitzer G. The primary structure of phospholipase A2 of Vipoxin from the venom of the Bulgarian viper (Vipera ammodytes ammodytes, Serpentes). Hoppe-Seyler's Z. Physiol. Chem. 1987; 368: 343
  • Maraganore J. M., Merutka G., Cho W., Welches W., Kezdy F. J., Heinrikson R. L. A new class of phospholipase A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding. J. Biol. Chem. 1984; 259: 13839
  • Lind P., Eaker D. Complete amino acid sequence of non-neurotoxic, non-enzymatic phospholipase A2 homolog from the venom of the Australian tiger snake (Notechis scutatus scutatus). Eur. J. Biochem. 1980; 111: 403
  • Bekkers A., Franken P. A., Toxopeus E., Verheij H., Haas G. H. The importance of glycine-30 for enzymatic activity of phospholipase A2. Biochim. Biophys. Acta 1991; 1076: 374
  • Maraganore J. M., Heinrikson R. L. The lysine-49 phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. Relation of structure and function to other phospholipases A2. J. Biol. Chem. 1986; 261: 4797
  • Yoshizumi K., Liu S. Y., Miyata T., Saita S., Ohno M., Iwanaga S., Kihara H. Purification and amino acid sequence of basic protein I, a lysine-49 phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu snake). Toxicon 1990; 28: 43
  • Liu S. Y., Yoshizumi K., Oda N., Ohno M., Tokunaga F., Iwanaga S., Kihara H. Purification and amino acid sequence of basic protein II, a lysine-49 phospholipase A2 with low activity, from Trimeresurus flavoviridis venom. J. Biochem. 1990; 107: 400
  • Liu C. S., Chen J. M., Chang C. H., Chen S. W., Teng C. M., Tsai I. H. The amino acid sequence and properties of an edema-inducing Lys-49 phospholipase A2 homolog from the venom of. Trimeresurus mucrosquamatus. Biochim. Biophys. Acta 1991; 1077: 362
  • Francis B., Gutierrez J. M., Lomonte B., Kaiser I. I. Myotoxin II from Bothrops asper (terciopelo) venom is a lysine-49 phospholipase A2. Archs. Biochem. Biophys. 1991; 284: 352
  • van denBergh C. J., Slotboom A. J., Verheij H. M., Haas G. H. The role of Asp-49 and other conserved amino acids in phospholipases A2 and their importance for enzymatic activity. J. Cell. Biochem. 1989; 39: 379
  • Ogawa T., Oda N., Nakashima K., Sasaki H., Hattori M., Sakaki Y., Kihara H., Ohno M. Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 8557
  • Oda N., Nakamura H., Sakamoto S., Liu S. Y., Kihara H., Chang C. C., Ohno M. Amino acid sequence of a phospholipase A2 from the venom of Trimeresurus graminens (green habu snake). Toxicon 1991; 29: 157
  • Fukagawa T., Matsumoto H., Shimohigashi Y., Ogawa T., Oda N., Chang C. C., Ohno M. Sequence determination and characterization of a phospholipase A2 isozyme from Trimeresurus gramineus (green have snake) venom. Toxicon 1992; 30: 1331
  • Dijkstra B. W., Drenth J., Kalk K. H. Active site and catalytic mechanism of phospholipase A2. Nature 1981; 289: 604
  • Fukagawa T., Nose T., Shimohigashi Y., Ogawa T., Oda N., Nakashima K., Chang C. C., Ohno M. Purification, sequencing and characterization of single amino acid-substituted phospholipase A2 isozymes from Trimeresurus gramineus (green habu snake) venom. Toxicon 1993; 31: 957
  • Dhillon D. S., Condrea E., Maraganore J. M., Heinrikson R. L., Benjamin S., Rosenberg P. Comparison of enzymatic and pharmacological activities of lysine-49 and aspartate-49 phospholipase A2 from Agkistrodon piscivorus piscivorus snake venom. Biochem. Pharmacol. 1987; 36: 1723
  • Chiu H. F., Chen I. J., Teng C. M. Edema formation and degranulation of mast cells by a basic phospholipase A2 purified from Trimeresurus mucrosquamatus snake venom. Toxicon 1989; 27: 115
  • Wang J. P., Teng C. M. Rat paw edema and mast cell degranulation caused by two phospholipase A2 enzymes isolated from Trimeresurus mucrosquamatus venom. J. Pharm. Pharmacol. 1990; 42: 842
  • Wang J. P., Teng C. M. Comparison of the enzymatic and edema-producing activities of two venom phospholipase A2 enzymes. Eur. J. Pharmacol. 1990; 190: 347
  • Holland D. R., Clancy L. L., Muchmore S. W., Ryde T. J., Einspahr H. M., Finzel B. C., Heinrikson R., Watenpaugh D. K. The crystal structure of a lysine 49 phospholipase A2 from the venom of the Crottonmouth snake at 2.0-Å resolution. J. Biol. Chem. 1990; 265: 17649
  • Gubensek F., Ritonja A., Zupan J., Turk V. Basic proteins of Vipera ammodytes venom. Studies of structure and function. Period. Biol. 1980; 82: 443
  • Ritonja A., Machleidt W., Turk V., Gubensek F. Amino acid sequence of ammodytoxin B partially reveals the location of the site of toxicity of ammodytoxins. Hoppe-Seyler's Z. Physiol. Chem. 1986; 367: 919
  • Krizaj I., Turk D., Ritonja A., Gubensek F. Primary structure of ammodytoxin C further reveals the toxic site of ammodytoxin. Biochim. Biophys. Acta 1989; 999: 198
  • Pungercar J., Kordis D., Strukelj B., Liang N. S., Gubensek F. Cloning and nucleotide sequence of a cDNA encoding ammodytoxin A, the most toxic phospholipase A2 from the venom of long-nosed veper (Vipera ammodytes). Toxicon 1991; 29: 269
  • Thouin L., Ritonja A., Gubensek F., Russell F. E. Neuromuscular and lethal effects of phospholipase A from Vipera ammodytes venom. Toxicon 1982; 20: 1051
  • Takasaki C., Sugama A., Yanagita A., Tamiya N., Rowan E. G., Harvey A. L. Effects of chemical modifications of Pa-11, a phospholipase A2 from the venom of Australian king brown snake (Pseudechis australis), on its biological activities. Toxicon 1990; 28: 107
  • Krizaj I., Liang N. S., Pungercar J., Strukelj B., Ritonja A., Gubensek F. Amino acid and cDNA sequences of a neutral phospholipase A2 from the longnosed viper (Vipera ammodytes ammodytes) venom. Eur. J. Biochem. 1992; 204: 1057
  • Scott D. L., White S. P., Browning J. L., Rosa J. J., Gelb M. H., Sigler P. B. Structure of free and inhibited human secretory phospholipase A2 from inflammatory exudate. Science 1991; 254: 1007
  • Wery J. P., Schevitz R. W., Clawson D. K., Bobbitt J. L., Dow E. R., Gamboa G., Goodson T., Kramer R., Clure D. B., Mihelich E. D., Putnam J. E., Sharp J. D., Stark D. H., Teater C., Warrick M. W., Jones N. D. Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution. Nature 1991; 352: 79

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.