5
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Structures in Solution of Toxins from Taiwan Cobra Venom, Naja naja atra, Derived from NMR Spectra

, &
Pages 291-315 | Published online: 28 Sep 2008

References

  • Karlsson E. Chemistry of protein toxins in snake venoms. Handbook of Experimental Pharmacology, C. Lee. Springer Verlag, Berlin 1979; 52: 159
  • Low B. W. The three-dimensional structure of postsynaptic neurotoxins: Consideration of structure and function. Handbook of Experimental Pharmacology, C. Y. Lee. Springer Verlag, Berlin 1979; 52: 213
  • Lee C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol. 1972; 12: 265
  • Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from elapid snake venoms. CRC Crit. Rev. Biochem. 1983; 14: 113
  • Dufton M. J., Hider R. C. Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther. 1988; 36: 1
  • Endo T., Tamiya N. Current view of the structure-function relationship of postynaptic neurotoxins from snake venoms. Pharmacol. Ther. 1987; 34: 403
  • Faucon J. F., Dufourcq J., Couraud F., Rochat H. A comparative study of the binding of cardiotoxins and neurotoxins to phospholipid vesicles. Biochim. Biophys. Acta 1979; 554: 332
  • Yang C. C. Structure and function of snake neurotoxin. Recent Advances in Molecular and Biochemical Research on Proteins, Y. H. Wei, S. S. Chen, J. Su. World Scientific Pub., Singapore 1993; 105
  • Harvery A. L. Cardiotoxins from cobra venoms: Possible mechanisms of action. J. Toxicol. Toxin Rev. 1985; 4: 41
  • Chien K. Y., Huang W. N., Hean J. H., Wu W. G. Fusion of spingomyelin vesicles induced by proteins from Taiwan cobra (Naja naja atra) venom. J. Biol. Chem. 1991; 266: 3252
  • Dufourcq J., Faucon J. F., Bernard E., Pezolet M. Structure-function relationships for cardiotoxins interacting with phospholipids. Toxicon. 1982; 20: 165
  • Hodges S J., Agbagi A S., Hider R C. Cobra cardiotoxins: Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. 1987; 165: 373
  • Lauterwein J., Wuthrich K. A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms. FEBS Lett. 1978; 93: 181
  • Chiou S-H., Raynor R. L., Zheng B., Chambers T. C., Kua J. K. Cobra venom cardiotoxin (cytotoxin) isoforms and neurotoxin: Comparative potency of protein kinase C inhibition and cancer cell cytotoxity and modes of enzyme inhibition. Biochemistry 1993; 32: 2062
  • Hayashi K., Takechi M., Kaneda N., Sasaki T. Amino acid sequence of cardiotoxin from the venom of. Naja naja atra. FEBS Lett. 1976; 66: 210
  • Kaneda N., Sasaki T., Hayashi K. Primary structures of cardiotoxin analogues II and IV from. Naja naja atra. Biochem. Biophys. Acta 1977; 491: 53
  • Kaneda N. K., Sasaki T., Hayashi K. The amino acid sequence of cardiotoxinanalogue IV from the venom of. Naja naja atra. FEBS Lett. 1976; 70: 217
  • Yang C. C. Crystallization and properties of cobrotoxin from Farmosan cobra venom. J. Biol. Chem. 1965; 240: 1616
  • Yang C. C. The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim. Biophys. Acta. 1967; 133: 346
  • Yang C. C., Chang C. C., Hayashi K., Suzuki T. Amino acid composition and end group analysis of cobrotoxin. Toxicon 1969; 7: 43
  • Yang C. C., Yang H. J., Huang J. S. Amino acid sequence of cobrotoxin. Biochim. Biophys. Acta 1969; 188: 65
  • Yang C. C. Biochemical and immunochemical studies on cobrotoxin. The Snake 1970; 2: 1
  • Chang C. C., Yang C. C., Kurobe M., Nakai K., Hayashi K. The identification of the special glutamic acid residue essential for activity of cobrotoxin. Biochem. Biophys. Res. Commun. 1971; 43: 429
  • Chang C. C., Yang C. C., Nakai K., Hayashi K. Studies on the status of free amino and carboxyl groups in cobrotoxin. Biochim. Biophys. Acta 1971; 251: 334
  • Yang C. C., Chang C. C., Liou I. F. Studies on the status of arginine residues in cobrotoxin. Biochim. Biophys. Acta 1974; 365: 1
  • Low B. W., Corfield P. W.R. Acetylcholine receptor: ç -Toxin binding site-Theoretical and model studies. Asia Pacific J. Pharmacol. 1987; 2: 115
  • Yang C. C. Immunochemical studies on cobra neurotoxin. The Snake 1988; 2: 133
  • Yang C. C. Chemistry and immunochemistry of cobrotoxin. J. Chinese Biochem. Soc. 1988; 17: 20
  • Yang C. C. Chemistry of snake neurotoxins and future perspectives. J. Chinese Chem. Soc. 1992; 39: 731
  • Galat A., Degelaen J. P., Yang C. C., Blout E. R. Reversed unfolding-refolding process of cobra neurotoxin. Biochemistry 1981; 20: 7415
  • Bougis P. E., Teissie J., Rochat H., Pieroni G., Verger R. Mixed phospholipid-cardiotoxin monomolecular films studied by intrinsic polarized surface fluorescence. Biochem. Biophys. Res. Commun. 1987; 143: 506
  • Surewicz, Stepanik W., Szabo A., Mantsch H. H. Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 1988; 263: 786
  • Chang K. L., Chen Y. S., Lin S. R., Chang L. S., Chang C. C. Probing the functional sites in Naja naja atra (Taiwan cobra) cardiotoxin III with monoclonical antibody. Biochem. Mol. Biol. Intl. 1993; 29: 1015
  • Sun J. J., Walker M. J.A. Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon 1986; 24: 233
  • Harvey A. L., Hayashi K. Depolarization of skeletal muscle cells in culture by a cardiotoxin-like basic polypeptide from the venom of the Taiwan cobraNaja naja atra. Toxicon 1987; 25: 681
  • Louw A. I., Visser L. Kinetics of erythrocyte lysis by snake venom cardiotoxins. Biochim. Biophys. Acta 1977; 498: 143
  • Hsia J. C., Er S. S., Lee C. Y. Effects of Ca2+ and membrane surface charge on the direct lytic activity of cobra cardiotoxin-A membrane spin assay. Biochim. Biophys. Acta 1978; 80: 472
  • Louw A. I., Visser L. The synergism of cardiotoxin and phospholipase A2 in hemolysis. Biochim. Biophys. Acta 1978; 512: 163
  • Harvey A. L., Hider R. C., Khader F. Effect of phospholipase A on actions of cobra venom cardiotoxins on erythrocytes and skeletal muscle. Biochim. Biophys. Acta 1983; 728: 215
  • Low B. W., Preston H. S., Sato A., Rosen L. S., Searl J. E., Rudko A. D., Richardson J. S. Three dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receptor. Proc. Natl. Acad. Sci. USA 1976; 73: 2991
  • Tsernoglou D., Petsko G. A. The three-dimensional structure of neurotoxin α from venom of Philippines sea snake. Proc. Natl. Acad. Sci. USA 1977; 74: 971
  • Walkinshaw M. D., Saenger W., Maelicke A. Three-dimensional structure of “long” neurotoxin from cobra venom. Proc. Natl. Acad. Sci. USA 1980; 77: 2400
  • Wang A. H.J., Yang C. C. Crystallographic studies of snake venom proteins from Taiwan cobra (Naja naja atra): Cardiotoxin-analogue III and phospholipase A2. J. Biol. Chem. 1981; 256: 9279
  • Love R. A., Stroud R. M. The crystal structure of α -bungarotoxin at 2.5 A resolution: Relation to solution structure and binding to acetylcholine receptor. Protein Eng. 1986; 1: 37
  • Smith J. L., Corfield P. W.R., Hendrickson W. A., Low B. W. Refinement at 1.4 A of a model of erabutoxin b: Treatment of ordered solvent and discrete disorder. Acta Cryst. Sect. A 1988; 44: 357
  • Rees B., Bilwes A., Samama J. P., Moras D. Cardiotoxin VII4 from Naja mossambica mossambica. Refined crystal structure. J. Mol. Biol. 1990; 214: 281
  • Betzel C., Gange G., Pal G. P., Wilson K. S., Maelicke A., Saenger W. The refined crystal structure of α -cobratoxin from Naja naja siamensis at 2.4 A resolution. J. Biol. Chem. 1991; 266: 21530
  • Ernst R. R., Bodenhausen G., Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, New York 1987
  • Wuthrich K. NMR of Proteins and Nucleic Acids. Wiley, New York 1986
  • Clore G. M., Gronenborn A. M. Determination of the three-dimensional structures of proteins and nucleic acids in solutions by nuclear magnetic resonance spectroscopy. Crit. Rev. Biochem. Mol. Biol. 1989; 24: 479
  • Williamson M. P., Havel T. F., Wuthrich K. Solution conformation of proteinase inhibitor II A from bull seminal plasma by 1H magnetic resonance and distance geometry. J. Mol. Biol. 1985; 182: 295
  • Clore G. M., Gronenborn A. M., Brunger A. T., Karplus M. Solution conformation of a heptadecapeptide comprising the DNA binding helix F of the cyclic AMP receptor protein of Escherichia coli. J. Mol. Biol. 1985; 186: 435
  • Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988; 229: 317
  • Driscoll P. C., Gronenborn A. M., Beress L., Clore G. M. Determination of 3-D solution structure of antihypertensive and antiviral protein BDS- I from sea anemone Anemonia sulcata: A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 1989; 28: 2188
  • Wagner G., Braun W., Havel T. F., Schaumann T., Wuthrich K. Protein structures in solution by nuclear magnetic resonance and distance geometry. The polypeptide fold of the basic pancreatic trypsin inhibitor determined using two different algorithms. DISGEO and DISMAN. J. Mol. Biol. 1987; 196: 611
  • Gippert G. P., Yip P., Wright P. E., Case D. A. Computational methods for determining protein structures from NMR. Biochem. Pharmacol. 1990; 40: 15
  • Lauterwein J., Lazdunski M., Wuthrich K. The 1H Nuclear-magnetic resonance spectra of Neurotoxin I and cardiotoxin VII4 from Naja mossambica mossambica. Eur. J. Biochem. 1978; 92: 362
  • Endo T., Inagaki F., Hayashi K., Miyazawa T. Conformation of cobrotoxin in aqueous solution as studied by nuclear magnetic resonance. Eur. J. Biochem. 1979; 102: 417
  • Otting G., Steinmetz W. E., Bougis P. E., Rochat H., Wuthrich K. Sequence-specific 1H-NMR assignments and determination of the secondary structure in aqueous solutions of the cardiotoxins CTX II a and CTX II b from Naja mossambica mossambica. Eur. J. Biochem. 1987; 168: 609
  • Steinmetz W. E., Bougis P. E., Rochat H., Redwine O. D., Braun W., Wuthrich K. 1H Nuclear magnetic resonance studies of the three-dimensional structure of the cardiotoxin CTX II b from Naja mossambica mossambica in aqueous solution and comparison with the crystal structures of homologous toxins. Eur. J. Biochem. 1988; 172: 101
  • Tsernoglou D., Petsko G.J. E., Jr, Hermans J. Molecular graphics: Application to the structure determination of a snake venom neurotoxin. Science 1977; 197: 1378
  • Zinn-Justin S., Roumestand C., Bontems B., Menez A., Toma F. Three-dimensional structure of a curare-mimetic toxin from Naja nigricollis venom: A proton NMR and molecular modeling study. Biochemistry 1992; 31: 11335
  • Sutcliffe M. J., Dobson C. M., Oswald R. E. Solution structure of neuronal bungarotoxin determined by 2D NMR spectroscopy: Calculation of tertiary structure using systematic homologous model building, dynamical simulated annealing and restrained molecular dynamics. Biochemistry 1992; 31: 2962
  • Goas R., LaPlante S. R., Mikou A., Delsuc M. A., Guittet E., Robin M., Charpentier I., Lallemand J. Y. α -Cobratoxin: Proton NMR assignments and solution structure. Biochemistry 1992; 31: 4867
  • Brown L. R., Wuthrich K. Nuclear magnetic resonance solution structure of the α -neurotoxin from the black mamba (Dendroaspis polylepis polylepis). J. Mol. Biol. 1992; 227: 1118
  • Wilcox G. R., Fogh R. H., Norton R. S. Refined structure in solution of the sea anemone neurotoxin Shl. J. Biol. Chem. 1993; 268: 24707
  • Leroy E., Mikou A., Yinshan Y., Guittet E. NMR solution structure of α -cobratoxin at pH 3.2 and at pH 7.5. J. Mol. Graphics 1993; 4: 65
  • Basus V. J., Song G., Hawrot E. NMR solution structure of an α -bungarotoxin/nicotinic receptor peptide complex. Biochemistry 1993; 32: 12290
  • Yu C., Bhaskaran R., Chuang L. C., Yang C. C. Solution conformation of cobrotoxin: A nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry 1993; 32: 2131
  • Singhal A., Chien K Y., Wu W G., Rule G. S. Solution structure of cardiotoxin V from. Naja naja atra. Biochemistry 1993; 32: 8036
  • Connell J. F., Bougis P. E., Wuthrich K. Determination of the nuclear magnetic resonance solution structure of cardiotoxin CTX II b from. Naja mossambica mossambica. Eur. J. Biochem. 1993; 213: 891
  • Golovanov A. P., Lomize A. L., Arseniev A. S., Utkin Y. N., Tsetlin V. Two-dimensional 1H-NMR study of the spatial structure of neurotoxin II from. Naja naja oxiana. Eur. J. Biochem. 1993; 213: 1213
  • Gilquin B., Roumstand C., Zinn-Justin S., Menez A., Toma F. Refined three-dimensional solution structure of a snake venom cardiotoxin: Analysis of the side-chain organization suggests the existence of a possible phospholipid binding site. Biopolymers 1993; 33: 1659
  • Bhaskaran R., Huang C. C., Chang D. K., Yu C. Cardiotoxin III from Taiwan cobra (Naja naja atra): Determination of structure in solution and comparison with short neurotoxins. J. Mol. Biol. 1994; 235: 1291
  • Marion D., Wuthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of proton-proton spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 1983; 113: 967
  • Rance M., Sorensen O. W., Bodenhausen G., Wagner G., Ernst R. R., Wuthrich K. Improved spectral resolution in COSY NMR spectra of proteins via double quantum filtering. Biochem. Biophys. Res. Commun. 1983; 117: 479
  • Bax A., Davies D. G. MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J. Magn. Reson. 1985; 65: 355
  • Anil Kumar, Ernst R. R., Wuthrich K. A two-dimensional nuclear overhauser enhancement (2D NOE) experiment for elucidation of complete proton-proton cross-ralaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 1980; 95: 1
  • Wuthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurement of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 1983; 169: 949
  • Werner M. H., Wemmer D. E. Three-dimensional structure of soybean trypsin/chymotrypsin Bowman-Birk inhibitor in solution. Biochemistry 1992; 31: 999
  • Englander S. W., Wand A. J. Main chain directed strategy for the assignment of 1H-NMR spectra of proteins. Biochemistry 1987; 26: 5953
  • Pardi A., Billeter M., Wuthrich K. Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3JHNα in a globular protein. J. Mol. Biol. 1984; 180: 741
  • Hyberts S. G., Marki W., Wagner G. Stereospecific assignments of side-chain protons and characterization of torsion angles in Eglin c. Eur. J. Biochem. 1987; 164: 625
  • Nilges M., Clore G. M., Gronenborn A. M. 1H-NMR stereospecific assignments by conformational data base searches. Biopolymers 1990; 29: 813
  • Brunger A. T. X-PLOR Software Manual, version 3.0. Yale University, New Haven, CT 1992
  • Chiou S. H., Lee B. S., Yu N. T. Structural analysis and comparison of cobrotoxin and cardiotoxins by near-IR Fourier transform Raman spectroscopy. Biochem. Intl. 1992; 26: 747
  • Ruan K-H, Stiles B. G., Atassi M. Z. The short neurotoxin-binding regions on the α -chain of human and Torpedo californica acteylcholine receptors. Biochem. J. 1991; 274: 849
  • Tsetlin V. I., Karlsson E., Utkin Y. N., Pluzhnikov K., Surin A. M., Kondakov V. V., Bystrov V. V., Ivanov V. T., Ovchinnikov Y. A. Interacting surfaces of neurotoxins and acetylcholine receptor. Toxicon 1982; 20: 83
  • Chicheportiche R. C., Vincent J. P., Kopeyan C., Schweitz H., Lazdunski M. Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry 1975; 14: 2081
  • Bothner By. Frontiers of NMR in Molecular Biology, D. Live, I. M. Armitage, D. Patel. Wiley-Liss. 1989; 16
  • Yang C. C. Cobrotoxin structure and function. Pharmacology, M. J. Rand, C. Raper. Elsevier Science Publishers. 1987; 871
  • Visser L., Louw A. I. The conformations of cardiotoxins and neurotoxins from snake venoms. Biochim. Biophys. Acta 1978; 533: 80
  • Bougis P., Rochat H., Pieroni G., Verger R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 1981; 20: 4915
  • Bougis P., Rochat H., Peironi G., Vergner R. A possible change of orientation change of cardiotoxin molecule during its interaction with phospholipid monolayer. Toxicon 1982; 20: 187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.