40
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A biophysical approach to the study of structure and function of connexin channel nanopores

&
Pages 31-39 | Accepted 16 Jan 2012, Published online: 10 Feb 2012

References

  • Harris AL. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys. 2001;34:325–472.
  • Goodenough DA. The structure of cell membranes involved in intercellular communication. Am J Clin Pathol. 1975;63: 636–45.
  • Sohl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res. 2004;62:228–32.
  • Beyer EC, Paul DL, Goodenough DA. Connexin family of gap junction proteins. J Membr Biol. 1990;116:187–94.
  • Naus CC, Laird DW. Implications and challenges of connexin connections to cancer. Nat Rev Cancer. 2010;10:435–41.
  • Werner R. IRES elements in connexin genes: a hypothesis explaining the need for connexins to be regulated at the translational level. IUBMB Life. 2000;50:173–6.
  • Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2003;10:2045–58.
  • Kumar NM, Gilula NB. The gap junction communication channel. Cell. 1996;84:381–8.
  • Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol. 2003;4:285–94.
  • Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, . ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2 + signals across the inner ear. Proc Natl Acad Sci USA. 2008;105:18770–5.
  • Gonzalez D, Gomez-Hernandez JM, Barrio LC. Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol. 2007;94: 66–106.
  • Lawrence TS, Beers WH, Gilula NB. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978;272:501–6.
  • Saez JC, Connor JA, Spray DC, Bennett MV. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci USA. 1989;86:2708–12.
  • Bos JL. Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol. 2003;4:733–8.
  • Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, Kandel ER, . Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science. 1993;260:222–6.
  • Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–25.
  • Berridge MJ, Dawson RM, Downes CP, Heslop JP, Irvine RF. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983;212:473–82.
  • Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem. 2001;70:281–312.
  • Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–5.
  • Kasai H, Petersen OH. Spatial dynamics of second messengers: IP3 and cAMP as long-range and associative messengers. Trends Neurosci. 1994;17:95–101.
  • Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2 + from a non-mitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983;306: 67–9.
  • Irvine RF. Twenty years of Ins(1,4,5)P3, and 40 years before. Nat Rev Mol Cell Biol. 2003;4:586–90.
  • Oh S, Ri Y, Bennett MV, Trexler EB, Verselis VK, Bargiello TA. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron. 1997;19:927–38.
  • Spray DC, Dermietzel R. X-linked dominant Charcot- Marie-Tooth disease and other potential gap-junction diseases of the nervous system. Trends Neurosci. 1995;18: 256–62.
  • Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, . Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res. 1998;294: 415–20.
  • Majumder P, Crispino G, Rodriguez L, Ciubotaru CD, Anselmi F, Piazza V, . ATP-mediated cell-cell signaling in the organ of Corti: the role of connexin channels. Purinergic Signalling. 2010;6:167–87.
  • Ortolano S, Di Pasquale G, Crispino G, Anselmi F, Mammano F, Chiorini JA. Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci USA. 2008;105:18776–81.
  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE. The origin of spontaneous activity in the developing auditory system. Nature. 2007;450:50–5.
  • Beltramello M, Piazza V, Bukauskas FF, Pozzan T, Mammano F. Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol. 2005;7:63–9.
  • Bruzzone R, Cohen-Salmon M. Hearing the messenger: Ins(1,4,5)P3 and deafness. Nat Cell Biol. 2005;7:14–6.
  • Meda P. Assaying the molecular permeability of connexin channels. In: Bruzzone R, Giaume, C, editors. Connexin Methods and Protocols. Totowa, New Jersey: Humana Press; 2001. p. 201–24.
  • Weber PA, Chang HC, Spaeth KE, Nitsche JM, Nicholson BJ. The permeability of gap-junction channels to probes of different size is dependent on connexin composition and permeant-pore affinities. Biophys J. 2004;87:958–73.
  • Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, . Specific permeability and selective formation of gap-junction channels in connexin-transfected HeLa cells. J Cell Biol. 1995;129:805–17.
  • Cao F, Eckert R, Elfgang C, Nitsche JM, Snyder SA, DF Hu, . A quantitative analysis of connexin-specific permeability differences of gap junctions expressed in HeLa transfectants and Xenopus oocytes. J Cell Sci. 1998;111:31–43.
  • Qu Y, Dahl G. Function of the voltage gate of gap-junction channels: selective exclusion of molecules. Proc Natl Acad Sci USA. 2002;99:697–702.
  • Bedner P, Niessen H, Odermatt B, Kretz M, Willecke K, Harz H. Selective Permeability of Different Connexin Channels to the Second Messenger Cyclic AMP. J Biol Chem. 2006;281: 6673–81.
  • Churchill GC, Louis CF. Roles of Ca2 + , inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2 + signalling in sheep lens cells. J Cell Sci. 1998;111:1217–25.
  • Niessen H, Harz H, Bedner P, Kramer K, Willecke K. Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci. 2000;113: 1365–72.
  • Niessen H, Willecke K. Strongly decreased gap junctional permeability to inositol 1,4, 5-trisphosphate in connexin32 deficient hepatocytes. FEBS Lett. 2000;466:112–4.
  • Sneyd J, Charles AC, Sanderson MJ. A model for the propagation of intercellular calcium waves. Am J Physiol. 1994;266: 293–302.
  • Lin GC, Rurangirwa JK, Koval M, Steinberg TH. Gap junctional communication modulates agonist-induced calcium oscillations in transfected HeLa cells. J Cell Sci. 2004;117:881–7.
  • Boitano S, Dirksen ER, Sanderson MJ. Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 1992;258:292–5.
  • Sanderson MJ. Intercellular calcium waves mediated by inositol trisphosphate. Ciba Found Symp. 1995;188:175 – 89; discussion 89−94.
  • Ponsioen B, Zhao J, Riedl J, Zwartkruis F, van der Krogt G, Zaccolo M, . Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 2004;5:1176–80.
  • Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem. 2004;279:38095–8.
  • Miyawaki A. Fluorescence imaging of physiological activity in complex systems using GFP-based probes. Curr Opin Neurobiol. 2003;13:591–6.
  • Michalet X, Kapanidis AN, Laurence T, Pinaud F, Doose S, Pflughoefft M, . The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct. 2003;32:161–82.
  • Zaccolo M, Filippin L, Magalhaes P, Pozzan T. Heterogeneity of second messenger levels in living cells. Novartis Found Symp. 2001;239:85 – 93; discussion − 5, 150−9.
  • Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Zaccolo M, . Unitary permeability of gap-junction channels to second messengers measured by FRET microscopy. Nat Methods. 2007;4:353–8.
  • van Rijen HVM, Wilders R, Rook MB, Jongsma HJ. Dual Patch Clamp. In: Bruzzone R, Giaume C, editors. Connexin Methods and Protocols. Totowa, New Jersey: Humana Press; 2001. p. 269–92.
  • Ciubotaru CD, Bastianello S, Beltramello M, Pozzan T, Mammano F. Multi-modal imaging of cytosolic and mitochondrial Ca2 +. In: Hamza MH, editor. Biomedical Engineering. Anaheim, CA, USA: ACTA Press; 2005. p. 99−102.
  • Patel S, Joseph SK, Thomas AP. Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium. 1999;25: 247–64.
  • Bukauskas FF, Verselis VK. Gap-junction channel gating. Biochim Biophys Acta. 2004;1662:42–60.
  • Peracchia C. Chemical gating of gap-junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta. 2004;1662:61–80.
  • Brink PR, Ramanan SV. A model for the diffusion of fluorescent probes in the septate giant axon of earthworm: axoplasmic diffusion and junctional membrane permeability. Biophys J. 1985;48:299–309.
  • Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E. Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature. 2003;425: 200–5.
  • Bosanac I, Alattia JR, Mal TK, Chan J, Talarico S, Tong FK, . Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature. 2002;420: 696–700.
  • Eckert R. Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. Biophys J. 2006;91:565–79.
  • Valiunas V, Beyer EC, Brink PR. Cardiac gap-junction channels show quantitative differences in selectivity. Circ Res. 2002;91:104–11.
  • Jorgensen NR, Geist ST, Civitelli R, Steinberg TH. ATP- and gap-junction-dependent intercellular calcium signalling in osteoblastic cells. J Cell Biol. 1997;139:497–506.
  • Paemeleire K, Martin PE, Coleman SL, Fogarty KE, Carrington WA, Leybaert L, . Intercellular calcium waves in HeLa cells expressing GFP-labelled connexin 43, 32, or 26. Mol Biol Cell. 2000;11:1815–27.
  • Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, . Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature. 2009;458:597–602.
  • Unger VM, Kumar NM, Gilula NB, Yeager M. Three-dimensional structure of a recombinant gap-junction membrane channel. Science. 1999;283:1176–80.
  • Muller DJ, Hand GM, Engel A, Sosinsky GE. Conformational changes in surface structures of isolated connexin 26 gap junctions. Embo J. 2002;21:3598–607.
  • Oshima A, Tani K, Hiroaki Y, Fujiyoshi Y, Sosinsky GE. Three-dimensional structure of a human connexin26 gap-junction channel reveals a plug in the vestibule. Proc Natl Acad Sci USA. 2007;104:10034–9.
  • Lindahl E, Sansom MS. Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol. 2008;18: 425–31.
  • Matsu-ura T, Michikawa T, Inoue T, Miyawaki A, Yoshida M, Mikoshiba K. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol. 2006;173:755–65.
  • Nikolaev VO, Gambaryan S, Lohse MJ. Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods. 2006;3:23–5.
  • Nickel R, Forge A. Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg. 2008;16:452–7.
  • Bergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, . Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science. 1993;262:2039–42.
  • Ciubotaru CD, Bastianello S, Beltramello M, Pozzan T, Mammano F, editors. Multi-Modal Imaging of Cytosolic and Mitochondrial Ca2 +. IASTED; 2005 February 16 − 18, 2005; Innsbruck, Austria: ACTA Press, Anaheim, CA, USA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.