552
Views
261
CrossRef citations to date
0
Altmetric
Research Article

Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants

, , , , &
Pages 30-42 | Received 02 Feb 2010, Accepted 18 Mar 2010, Published online: 15 May 2010

References

  • Aebi HE, 1983. Catalase. In: Bergmeyer HU, editor. Methods of enzymatic analysis. 3rd ed. New York: Academic Press. pp 273-286.
  • Blasco J, Aznar B, García J, Subías G, Herrero-Martín J, Stankiewicz J. 2008. Charge disproportionation in La1−xSrxFeO3 probed by diffraction and spectroscopic experiments. Phys Rev B 77:054107 (1–10).
  • Blatt MR. 2004. Membrane transport in plants. Annual plant reviews. Vol. 15. New York: Wiley-Blackwell Press.
  • Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR. 2009. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360.
  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Henry Lee E, Olszyk D. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of selected crop species. Environ Toxicol Chem 27:1922–1931.
  • Carpita N, Sabularse D, Montezinos D, Delmer DP. 1979. Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147.
  • Carpita N. 1982. Limiting diameters of pores and the surface structure of plant cell walls. Science 218:813–814.
  • Cataldo DA, McFadden KM, Garland TR, Wildung RE. 1988. Organic constituents and complexation of nickel(II), iron(III), cadmium(II), and plutonium(IV) in soybean xylem exudates. Plant Physiol 86:734–739.
  • Doshi R, Braida W, Christodoulatos C, Wazne M, O'Connor G. 2008. Nano-aluminum: Transport through sand columns and environmental effects on plants and soil communities. Environ Res 106:296–303.
  • European Commission Scientific Committee on Emerging and Newly Identified Health Risks. 2006. Modified opinion (after public consultation) on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. pp 13-14.
  • Farokhzad OC, Langer R. 2009. Impact of nanotechnology on drug delivery. ACS Nano 3:16–20.
  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling WG, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P. 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cell. Environ Health Perspect 113:1555–1560.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutase in higher plants. Plant Physiol 59:309–314.
  • Ginzburg VV, Balijepalli S. 2007. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett 7:3716–3722.
  • Gupta AK, Gupta M. 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021.
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts. IKinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.
  • Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P. 2005. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279.
  • Hong S, Bielinska AU, Mecke A, Keszler B, Beals JL, Shi XY, Balogh L, Orr BG, Baker JR Jr, Banaszak Holl MM. 2004. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: Hole formation and the relation to transport. Bioconjugate Chem 15:774–782.
  • Jiang W, Mashayekhi H, Xing BS. 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut 157:1619–1625.
  • Joseph T, Morrison M. 2006. Nanoforum report: Nanotechnology in agriculture and food. Accessed from the website: www.nanoforum.org.
  • Kam NWS, Liu Z, Dai H. 2006. Carbon nanotubes as intracellular transporters for proteins and DNA: An investigation of the uptake mechanism and pathway. Angewandte. Chemie Int Ed 45:577–581.
  • Kohler N, Sun C, Wang J, Zhang M. 2005. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir 21:8858–8864.
  • Leroueil PR, Hong S, Mecke A, Baker JR Jr, Orr BG, Banaszak Holl MM. 2007. Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Acc Chem Res 40:335–342.
  • Lin DH, Xing BS. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243–250.
  • Lin DH, Xing BS. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585.
  • Lin SJ, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–1132.
  • Liu JF, Zhao ZS, Jiang GB. 2008. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954.
  • Liu Y, Wu DC, Zhang WD, Jiang X, He CB, Chung TS, Goh SH, Leong KW. 2005. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angewandte Chemie Int Ed 44:4782–4785.
  • Mecke A, Majoros IJ, Patri AK, Baker JR Jr, Banaszak Holl MM, Orr BG. 2005. Lipid bilayer disruption by polycationic polymers: The roles of size and chemical functional group. Langmuir 21:10348–10354.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Oberdörster E. 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062.
  • Pantarotto D, Briand JP, Prato M, Bianco A. 2004. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Comm 1:16–17.
  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL. 2005. Nano-C60 cytoxicity is due to lipid peroxidation. Biomaterials 26:7587–7595.
  • Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365.
  • Shinohara N, Matsumoto T, Gamo M, Miyauchi A, Endo S, Yonezawa Y, Nakanishi J. 2009. Is lipid peroxidation induced by the aqueous suspension of fullerene C60 nanoparticles in the brains of Cyprinus carpio? Environ Sci Technol 43:948–953.
  • Torney F, Trewyn BG, Lin VSY, Wang K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300.
  • U.S. Environmental Protection Agency (US EPA). 1996. Ecological effects test guidelines (OPPTS 850.4200): Seed germination/root elongation toxicity test (public draft). Accessed from the website: http://www.epa.gov/opptsfrs/publications/OPPTS_Harmonized/850_Ecological_Effects_Test_Guidelines/Drafts/850-4200.pdf.
  • Van Bavel CHM, Nakayama FS, Ehrler WL. 1965. Measuring transpiration resistance of leaves. Plant Physiol 40:535–540.
  • Woehlecke H, Ehwald R. 1995. Characterization of size-permeation limits of cell walls and porous separation materials by high-performance size-exclusion chromatography. J Chromatography A 708:263–271.
  • Wu ZY, Gota S, Jollet F, Pollak M, Gautier-Soyer M, Natoli CR. 1997. Characterization of iron oxides by X-ray absorption at the oxygen K edge using a full multiple-scattering approach. Phys Rev B 55:2570–2577.
  • Yang L, Watts DJ. 2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132.
  • Yantasee W, Warner CL, Sangvanich T, Addleman RS, Carter TG, Wiacek RJ, Fryxell GE, Timchalk C, Warner MG. 2007. Removal of heavy metals from aqueous systems with thiol functionalized superparamagnetic nanoparticles. Environ Sci Technol 41:5114–5119.
  • Zheng L, Hong FS, Lu SP, Liu C. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92.
  • Zhu H, Han J, Xiao JQ, JY. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.