1,581
Views
333
CrossRef citations to date
0
Altmetric
Research Article

Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment – issues and recommendations

, &
Pages 711-729 | Received 09 Jul 2010, Accepted 28 Sep 2010, Published online: 02 Dec 2010

References

  • Aoki M, Ring TA, Haggerty JS. 1987. Analysis and modeling of the ultrasonic dispersion technique. Adv Ceram Mater 2(3A):209–212.
  • ASTM International (formally the American Society for Testing and Materials). 2006. Standard terminology relating to nanotechnology. E2456-06. West Conshohocken, PA: ASTM International.
  • Barnard AS. 2006. Nanohazards: Knowledge is our first defence. Nat Mater 5(4):245–248.
  • Basedow AM, Ebert KH. 1979. Effects of mechanical stress on the reactivity of polymers – activation of acid-hydrolysis of dextran by ultrasound. Polym Bull 1(4):299–306.
  • Berber S, Tomanek D. 2009. Hydrogen-induced disintegration of fullerenes and nanotubes: An ab initio study. Phys Rev B 80(7):075421–075425.
  • Berlan J, Mason TJ. 1992. Sonochemistry – from research laboratories to industrial plants. Ultrasonics 30(4):203–212.
  • Berliner S. 2010. Changing materials with high-intensity sound. Accessed from the website: http://berliner-ultrasonics.org/index.html.
  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14.
  • Boverhof DR, David RM. 2010. Nanomaterial characterization: Considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem 396(3):953–961.
  • Brinker JC, Scherer GW. 1990. Sol-gel science: The physics and chemistry of sol-gel processing. New York: Academic Press.
  • Brown B, Goodman J. 1965. High intensity ultrasonics: Industrial applications. Princeton, NJ: D. Van Nostrand Company.
  • Chen KL, Elimelech M. 2007. Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interf Sci 309(1):126–134.
  • Coakley WT, Brown RC, James CJ, Gould RK. 1973. Inactivation of enzymes by ultrasonic cavitation at 20 kHz. Arch Biochem Biophys 159(2):722–729.
  • Colvin VL. 2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170.
  • Contamine RF, Wilhelm AM, Berlan J, Delmas H. 1995. Power measurement in sonochemistry. Ultrason Sonochem 2(1):S43–47.
  • Dobrovolskaia MA, McNeil SE. 2007. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478.
  • Elzey S, Grassian VH. 2010. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanoparticle Res 12(5):1945–1958.
  • Forrest GA, Alexander AJ. 2007. A model for the dependence of carbon nanotube length on acid oxidation time. J Phys Chem C 111(29):10792–10798.
  • Guzman KAD, Finnegan MP, Banfield JF. 2006. Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693.
  • Gwinn MR, Vallyathan V. 2006. Nanoparticles: Health effects – pros and cons. Environ Health Persp 114(12):1818–1825.
  • Hielscher T. 2005. Ultrasonic production of nano-size dispersions and emulsions. ENS'05, Paris, France.
  • Honda H, Zhao QL, Kondo T. 2002. Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Ultrasound Med Biol 28(5):673–682.
  • Huang YY, Knowles TPJ, Terentjev EM. 2009. Strength of nanotubes, filaments, and nanowires from sonication-induced scission. Adv Mater 21(38–39):3945–3948.
  • Isfort CS, Rochnia M. 2009. Production and physico-chemical characterisation of nanoparticles. Toxicol Lett 186(3):148–151.
  • International Union of Pure and Applied Chemistry (IUPAC). 2009. Compendium of chemical terminology. Version 2009-09-07: Release 2.1.5.
  • Jiang JK, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89.
  • Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119.
  • Kawasaki H, Takeda Y, Arakawa R. 2007. Mass spectrometric analysis for high molecular weight synthetic polymers using ultrasonic degradation and the mechanism of degradation. Anal Chem 79(11):4182–4187.
  • Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD. 2010. Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408(10):2268–2272.
  • Kimura T, Sakamoto T, Leveque JM, Sohmiya H, Fujita M, Ikeda S, 1996. Standardization of ultrasonic power for sonochemical reaction. Ultrason Sonochem 3(3):S157–161.
  • Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, 2010. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20(3):512–518.
  • Kondo T, Kuwabara M, Sato F, Kano E. 1986. Influence of dissolved gases on chemical and biological effects of ultrasound. Ultrasound Med Biol 12(2):151–155.
  • Kraft M. 2005. Modelling of particulate processes. KONA 23:18–35.
  • Kreyling WG, Semmler-Behnke M, Moller W. 2006. Health implications of nanoparticles. J Nanopart Res 8(5):543–562.
  • Labille J, Masion A, Ziarelli F, Rose J, Brant J, Villieras F, 2009. Hydration and dispersion of C-60 in aqueous systems: The nature of water-fullerene interactions. Langmuir 25(19):11232–11235.
  • Lanone S, Boczkowski J. 2006. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr Mol Med 6(6):651–663.
  • Li SD, Huang L. 2008. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharmaceut 5(4):496–504.
  • Liu MH, Yang YL, Zhu T, Liu ZF. 2005. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon 43(7):1470–1478.
  • Lorimer JP, Mason TJ, Cuthbert TC, Brookfield EA. 1995. Effect of ultrasound on the degradation of aqueous native dextran. Ultrason Sonochem 2(1):S55–57.
  • Lucas A, Zakri C, Maugey M, Pasquali M, van der Schoot P, Poulin P. 2009. Kinetics of nanotube and microfiber scission under sonication. J Phys Chem C 113(48):20599–20605.
  • Makino K, Mossoba MM, Riesz P. 1983. Chemical effects of ultrasound on aqueous-solutions – formation of hydroxyl radicals and hydrogen atoms. J Phys Chem-Us 87(8):1369–1377.
  • Mandzy N, Grulke E, Druffel T. 2005. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160(2):121–126.
  • Mason TJ. 1989. Sonochemistry: Theory, applications and uses of ultrasound in chemistry. Chichester, UK: Ellis Horwood.
  • Mason TJ. 1991. Practical sonochemistry: User's guide to applications in chemistry and chemical engineering. Chichester, UK: Ellis Horwood.
  • Mason TJ, Peters D. 2003. Practical sonochemistry: Power ultrasound uses and applications. Chichester, UK: Ellis Horwood.
  • Maynard AD. 2006. Nanotechnology: A research strategy for addressing risk, Woodrow Wilson International Center for Scholars – project on emerging nanotechnologies.
  • Minimum Information for Nanomaterial Characterization (MinChar) Initiative. 2009. Recommended minimum physical and chemical parameters for characterizing nanomaterials on toxicology studies. Accessed from the website: http://characterizationmatters.org/parameters.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to In vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253.
  • Naddeo V, Belgiorno V, Napoli RMA. 2007. Behaviour of natural organic mater during ultrasonic irradiation. Desalination 210(1–3):175–182.
  • Oberdörster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1(1):2–25.
  • Pallem VL, Stretz HA, Wells MJM. 2009. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ Sci Technol 43(19):7531–7535.
  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, 2007. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949.
  • Park BS, Smith DM, Thoma SG. 1993. Determination of agglomerate strength distributions. 4. Analysis of multimodal particle size distributions. Powder Technol 76(2):125–133.
  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2(3):144–154.
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. 2007. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51.
  • Project on Emerging Nanotechnologies. 2010. Woodrow Wilson International Center for Scholars and the Pew Charitable Trusts. Accessed from the website: http://www.nanotechproject.org/inventories/consumer/.
  • Pugin B. 1987. Qualitative characterization of ultrasound reactors for heterogeneous sonochemistry. Ultrasonics 25(1):49–55.
  • Radziuk D, Grigoriev D, Zhang W, Su DS, Mohwald H, Shchukin D. 2010. Ultrasound-assisted fusion of preformed gold nanoparticles. J Phys Chem C 114(4):1835–1843.
  • Raimondi F, Scherer GG, Kotz R, Wokaun A. 2005. Nanoparticles in energy technology: Examples from electrochemistry and catalysis. Angew Chem Int Ed 44(15):2190–2209.
  • Raso J, Manas P, Pagan R, Sala FJ. 1999. Influence of different factors on the output power transferred into medium by ultrasound. Ultrason Sonochem 5(4):157–162.
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169.
  • Riesz P, Kondo T. 1992. Free-radical formation induced by ultrasound and its biological implications. Free Radical Bio Med 13(3):247–270.
  • Roebben G, Ramirez-Garcia S, Hackley VA, Roesslein M, Klaessig F, Kestens V, 2010. Interlaboratory reproducibility of size and surface charge measurements on nanoparticles prior to biological impact assessment. J Nanopart Res, in review.
  • Salata O. 2004. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):1–6.
  • Saleh NB, Pfefferle LD, Elimelech M. 2010. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44(7):2412–2418.
  • Singhal A, Skandan G, Wang A, Glumac N, Kear BH, Hunt RD. 1999. On nanoparticle aggregation during vapor phase synthesis. Nanostruct Mater 11(4):545–552.
  • Sonavane G, Tomoda K, Makino K. 2008. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloid Surf B 66(2):274–280.
  • Suslick KS. 1988. Ultrasound: Its chemical, physical and biological effects. New York: VCH Publishers.
  • Taghizadeh MT, Bahadori A. 2009. Degradation kinetics of poly (vinyl-pyrrolidone) under ultrasonic irradiation. J Polym Res 16(5):545–554.
  • Tantra R, Tompkins J, Quincey P. 2010. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension. Colloids Surf B-Biointerfaces 75(1):275–281.
  • Taurozzi JS, Hackley VA, Wiesner MR. 2010a. CEINT/NIST Protocol for the preparation of nanoparticle dispersions from powdered material using ultrasonic disruption.
  • Taurozzi JS, Hackley VA, Wiesner MR. 2010b. Reporting guidelines for the preparation of nanoparticle dispersions from dry materials.
  • Teleki A, Wengeler R, Wengeler L, Nirschl H, Pratsinis SE. 2008. Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol 181(3):292–300.
  • Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF. 2007. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 1(1):52–71.
  • Vasylkiv O, Sakka Y. 2001. Synthesis and colloidal processing of zirconia nanopowder. J Am Ceram Soc 84(11):2489–2494.
  • Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. 2010. What the cell ‘sees’ in bionanoscience. J Am Chem Soc 132(16):5761–5768.
  • Wang F, Gao F, Lan MB, Yuan HH, Huang YP, Liu JW. 2009a. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol in Vitro 23(5):808–815.
  • Wang J, Ding N, Zhang ZH, Guo Y, Wang SX, Xu R, 2009b. Investigation on damage of Bovine Serum Albumin (BSA) catalyzed by nano-sized Silicon dioxide (SiO2) under ultrasonic irradiation using spectral methods. Spectrosc Spect Anal 29(4):1069–1073.
  • Wang J, Wang YF, Gao J, Hu P, Guan HY, Zhang LQ, 2009c. Investigation on damage of BSA molecules under irradiation of low frequency ultrasound in the presence of Fe-III-tartrate complexes. Ultrason Sonochem 16(1):41–49.
  • Wang J, Wu J, Zhang ZH, Zhang XD, Wang L, Xu L, 2005. Sonocatalytic damage of Bovine Serum Albumin (BSA) in the presence of nanometer Titanium dioxide (TiO2) catalyst. Chinese Chem Lett 16(8):1105–1108.
  • Warheit DB. 2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185.
  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, 2009. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3(2):109–178.
  • Williams AR. 1983. Ultrasound: Biological effects and potential hazards. New York: Academic Press.
  • Yanagida H, Masubuchi Y, Minagawa K, Ogata T, Takimoto J, Koyama K. 1999. A reaction kinetics model of water sonolysis in the presence of a spin-trap. Ultrason Sonochem 5(4):133–139.
  • Zachariah MR, Carrier MJ. 1999. Molecular dynamics computation of gas-phase nanoparticle sintering: A comparison with phenomenological models. J Aerosol Sci 30(9):1139–1151.
  • Zhang WX. 2003. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5(3–4):323–332.
  • Zhu ZL, Minasny B, Field DJ. 2009. Adapting technology for measuring soil aggregate dispersive energy using ultrasonic dispersion. Biosystems Eng 104(2):258–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.