185
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice

, , , , , , , & show all
Pages 650-663 | Received 08 Jul 2010, Accepted 09 Nov 2010, Published online: 10 Dec 2010

References

  • Besecker B, Bao S, Bohacova B, Papp A, Sadee W, Knoell DL. 2008. The human zinc transporter SLC39A8 (Zip8) is critical in zinc-mediated cytoprotection in lung epithelia. Am J Physiol Lung Cell Mol Physiol 294:L1127–1136.
  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, 2006. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676.
  • Chan WH, Shiao NH. 2008. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin 29:259–266.
  • Chan WH, Shiao NH, Lu PZ. 2006. CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167:191–200.
  • Chao MR, Yen CC, Hu CW. 2008. Prevention of artifactual oxidation in determination of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction. Free Radic Biol Med 44:464–473.
  • Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM. 2007. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980.
  • Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D. 2007. Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol 5:1.
  • Clift MJ, Boyles MS, Brown DM, Stone V. 2010. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro. Nanotoxicology 4:139–149.
  • Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, 1997. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem 101:9463–9475.
  • Danielsen PH, Risom L, Wallin H, Autrup H, Vogel U, Loft S, 2008. DNA damage in rats after a single oral exposure to diesel exhaust particles. Mutat Res 637:49–55.
  • Das GK, Chan PPY, Teo A, Loo JSC, Anderson JM, Tan TTY. 2010. In vitro cytotoxicity evaluation of biomedical nanoparticles and their extracts. J Biomed Materials Res A 93A:337–346.
  • Deng Z, Schulz O, Lin S, Ding B, Liu X, Wei X, 2010. Aqueous synthesis of zinc blende CdTe/CdS magic-core/thick-shell tetrahedral-shaped nanocrystals with emission tunable to near-infrared. J Am Chem Soc 132:5592–5593.
  • Endo T, Fujii T, Sato K, Taniguchi N, Fujii J. 2000. A pivotal role of Zn-binding residues in the function of the copper chaperone for SOD1. BiochemBiophys Res Communic 276:999–1004.
  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S. 2004. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976.
  • Gao X, Wang T, Wu B, Chen J, Yue Y, Dai N, 2008. Quantum dots for tracking cellular transport of lectin-functionalized nanoparticles. Biochem Biophys Res Commun 377:35–40.
  • Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, 2008. Acute toxicity and prothrombotic effects of quantum dots: Impact of surface charge. Environ Health Perspect 116:1607–1613.
  • Griffith OW. 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27:922–935.
  • Han D, Ybanez MD, Ahmadi S, Yeh K, Kaplowitz N. 2009. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11:2245–2263.
  • Hardman R. 2006. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172.
  • Haridas M, Basu JK. 2010. Controlled photoluminescence from self-assembled semiconductor-metal quantum dot hybrid array films. Nanotechnology 21:415202.
  • Hasegawa S, Koshikawa M, Takahashi I, Hachiya M, Furukawa T, Akashi M, 2008. Alterations in manganese, copper, and zinc contents, and intracellular status of the metal-containing superoxide dismutase in human mesothelioma cells. J Trace Elem Med Biol 22:248–255.
  • Hauck TS, Anderson RE, Fischer HC, Newbigging S, Chan WC. 2010. In vivo quantum-dot toxicity assessment. Small 6:138–144.
  • He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, 2006. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: Characterization of transporter properties. Mol Pharmacol 70:171–180.
  • Hehlgans T, Pfeffer K. 2005. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: Players, rules and the games. Immunology 115:1–20.
  • Himeno S, Yanagiya T, Fujishiro H. 2009. The role of zinc transporters in cadmium and manganese transport in mammalian cells. Biochimie 91:1218–1222.
  • Honda A, Komuro H, Hasegawa T, Seko Y, Shimada A, Nagase H, 2010. Resistance of metallothionein-III null mice to cadmium-induced acute hepatotoxicity. J Toxicol Sci 35:209–215.
  • Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, 2004a. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Letters 4:2163–2169.
  • Hoshino A, Hanaki K, Suzuki K, Yamamoto K. 2004b. Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314:46–53.
  • Ipe BI, Lehnig M, Niemeyer CM. 2005. On the generation of free radical species from quantum dots. Small 1:706–709.
  • Jaiswal JK, Mattoussi H, Mauro JM, Simon SM. 2003. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotech 21:47–51.
  • King-Heiden TC, Wiecinski PN, Mangham AN, Metz KM, Nesbit D, Pedersen JA, 2009. Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ Sci Technol 43:1605–1611.
  • Lee HM, Shin DM, Song HM, Yuk JM, Lee ZW, Lee SH, 2009. Nanoparticles up-regulate tumor necrosis factor-alpha and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation. Toxicol Appl Pharmacol 238:160–169.
  • Lichten LA, Liuzzi JP, Cousins RJ. 2009. Interleukin-1beta contributes via nitric oxide to the upregulation and functional activity of the zinc transporter Zip14 (Slc39a14) in murine hepatocytes. Am J Physiol Gastrointest Liver Physiol 296:G860–867.
  • Lin CH, Chang LW, Chang H, Yang MH, Yang CS, Lai WH, 2009. The chemical fate of the Cd/Se/Te-based quantum dot 705 in the biological system: Toxicity implications. Nanotechnology 20:215101.
  • Lin P, Chen JW, Chang WH, Wu JP, Redding L, Chang H, 2008. Computational and structural toxicology of a nanoparticle, quantum dot 705, in mice. Environ Sci Tech 42:6264–6270.
  • Lores Arnaiz S, Llesuy S, Cutrin JC, Boveris A. 1995. Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med 19:303–310.
  • Lovric J, Cho SJ, Winnik FM, Maysinger D. 2005. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234.
  • Mahto SK, Park C, Yoon TH, Rhee SW. 2010. Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells. Toxicol In Vitro 24:1070–1077.
  • Min KS, Ueda H, Kihara T, Tanaka K. 2008. Increased hepatic accumulation of ingested Cd is associated with upregulation of several intestinal transporters in mice fed diets deficient in essential metals. Toxicol Sci 106:284–289.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235.
  • Moreno MG, Muriel P. 2006. Inducible nitric oxide synthase is not essential for the development of fibrosis and liver damage induced by CCl4 in mice. J Appl Toxicol 26:326–332.
  • Mulder WJ, Strijkers GJ, Nicolay K, Griffioen AW. 2010. Quantum dots for multimodal molecular imaging of angiogenesis. Angiogenesis 13:131–134.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Obonyo O, Fisher E, Edwards M, Douroumis D. 2010. Quantum dots synthesis and biological applications as imaging and drug delivery systems. Crit Rev Biotechnol: 1–19.
  • Ravanat JL, Douki T, Duez P, Gremaud E, Herbert K, Hofer T, 2002. Cellular background level of 8-oxo-7,8-dihydro-2′-deoxyguanosine: An isotope based method to evaluate artefactual oxidation of DNA during its extraction and subsequent work-up. Carcinogenesis 23:1911–1918.
  • Samia AC, Chen X, Burda C. 2003. Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737.
  • Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. 2004. On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675.
  • Sies H. 1993. Strategies of antioxidant defense. Eur J Biochem 215:213–219.
  • Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, 2009. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914.
  • Smith AM, Duan H, Mohs AM, Nie S. 2008. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60:1226–1240.
  • Song IS, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, 2008. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol 74:705–713.
  • Wu Y, Li X, Steel D, Gammom D, Sham LJ. 2004. Coherent optical control of semiconductor quantum dots for quantum information processing. Physica E: Low-Dimens Syst Nanostruct 25:242–248.
  • Yang RS, Chang LW, Wu JP, Tsai MH, Wang HJ, Kuo YC, 2007. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect 115:1339–1343.
  • Youn CK, Kim SH, Lee DY, Song SH, Chang IY, Hyun JW, 2005. Cadmium down-regulates human OGG1 through suppression of Sp1 activity. J Biol Chem 280:25185–25195.
  • Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA. 2008. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol 228:200–211.
  • Zharkov DO, Rosenquist TA. 2002. Inactivation of mammalian 8-oxoguanine-DNA glycosylase by cadmium(II): Implications for cadmium genotoxicity. DNA Repair (Amst) 1:661–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.