268
Views
25
CrossRef citations to date
0
Altmetric
Research Articles

Biological oxidative damage by carbon nanotubes: Fingerprint or footprint?

, , , &
Pages 61-76 | Received 05 Aug 2010, Accepted 07 Jan 2011, Published online: 18 Feb 2011

References

  • Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N, 2008. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–3903.
  • Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, 2008. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential – a workshop report and consensus statement. Inhal Toxicol 20:75–99.
  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, 2007. Meeting report: Hazard assessment for nanoparticles – report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659.
  • Bello D, Hsieh SF, Schmidt D, Rogers EJ. 2009. Nanomaterials properties vs. biological oxidant damage: Implications for toxicity screening and exposure assessment. Nanotoxicology 3:249–261.
  • Borm PJ, Kelly F, Kunzli N, Schins RP, Donaldson K. 2007. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup Environ Med 64:73–74.
  • Casey A, Herzog E, Lyng FM, Byrne HJ, Chambers G, Davoren M. 2008. Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells. Toxicol Lett 179:78–84.
  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, 2007. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448.
  • Donaldson K. 2006. Resolving the nanoparticles paradox. Nanomedicine 1:229–234.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, 2006. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2007. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5.
  • Donaldson K, Poland CA, Schins RPF. 2010. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology 4:414–420.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856.
  • Eby GN. 2008. INAA Laboratory Website. Accessed from the website: http://faculty.uml.edu/Nelson_Eby/Analytical%20Methods/INAA/trace_element_analysis_trace_ele.html.
  • Ellinger-Ziegelbauer H, Pauluhn J. 2009. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 266:16–29.
  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Pinero E, Beguin F, 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Physicochemical aspects. Chem Res Toxicol 21:1690–1697.
  • Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, 2006. Reactivity of carbon nanotubes: Free radical generation or scavenging activity? Free Radic Biol Med 40:1227–1233.
  • Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB. 2007. Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Materials 19:3472–3478.
  • Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH. 2008. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727.
  • Helland A, Wick P, Koehler A, Schmid K, Som C. 2007. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 115:1125–1131.
  • Hurt RH, Monthioux M, Kane A. 2006. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue. Carbon 44:1028–1033.
  • Journeay WS, Suri SS, Fenniri H, Singh B. 2008. High-aspect ratio nanoparticles in nanotoxicology. Integr Environ Assess Manag 4:128–129.
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, 2010. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nano 5:354–359.
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: Role of iron. Toxicol Lett 165:88–100.
  • Kane AB, Hurt RH. 2008. Nanotoxicology: The asbestos analogy revisited. Nat Nanotechnol 3:378–379.
  • Karajanagi SS, Vertegel AA, Kane RS, Dordick JS. 2004. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20:11594–11599.
  • Kostarelos K. 2008. The long and short of carbon nanotube toxicity. Nat Biotechnol 26:774–776.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.
  • Li JG, Li QN, Xu JY, Cai XQ, Liu RL, Li YJ, 2009. The pulmonary toxicity of multi-wall carbon nanotubes in mice 30 and 60 days after inhalation exposure. J Nanosci Nanotechnol 9:1384–1387.
  • Li Z, Hulderman T, Salmen R, Chapman R, Leonard SS, Young SH, 2007. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 115:377–382.
  • Lin G, Annette Von Dem B, Michelle B, Aihui Y, Agnes BK, Robert HH. 2008. Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727.
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. 2008a. Target removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 46:489–500.
  • Liu X, Guo L, Morris D, Kane AB, Hurt RH. 2008b. Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon NY 46:489–500.
  • Liu X, Hurt RH, Kane AB. 2010. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon 48:1961–1969.
  • Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, 2009. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 2(117):241–247.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112(2):468–481.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100:203–214.
  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup Environ Med 64:609–615.
  • Monteiro-Riviere NA, Inman AO. 2006. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–1078.
  • Monteiro-Riviere NA, Inman AO, Zhang LW. 2009. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235.
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: Toxicological aspects. Chem Res Toxicol 21:1698–1705.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231.
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, 2009. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3):161–171.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557.
  • Papp T, Schiffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q. 2008. Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27.
  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. 2009. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology 259:113–121.
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 113:226–242.
  • Plata DL, Gschwend PM, Reddy CM. 2008. Industrially synthesized single-walled carbon nanotubes: Compositional data for users, environmental risk assessments, and source apportionment. Nanotechnology 19:185706.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Pulskamp K, Diabate S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74.
  • Rogers EJ, Bello D, Hsieh S. 2008a. Oxidative stress as a screening metric of potential toxicity by nanoparticles and ariborne particulate matter. Inhal Toxicol 20:895.
  • Rogers EJ, Hsieh SF, Organti N, Schmidt D, Bello D. 2008b. A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: Human blood serum. Toxicol In Vitro 22:1639–1647.
  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, 2010. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461.
  • Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. 2009. Biopersistence and potential adverse health impacts of fibrous nanomaterials: What have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:511–529.
  • Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, 2006. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142.
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, 2003. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–708.
  • Shvedova AA, Kisin ER, Murray AR, Kommineni C, Castranova V, Fadeel B, 2008a. Increased accumulation of neutrophils and decreased fibrosis in the lung of NADPH oxidase-deficient C57BL/6 mice exposed to carbon nanotubes. Toxicol Appl Pharmacol 231:235–240.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, 2008b. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: Inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–565.
  • Simeonova PP. 2009. Update on carbon nanotube toxicity. Nanomedicine (Lond) 4:373–375.
  • Simon-Deckers A, Gouget B, Mayne-L'hermite M, Herlin-Boime N, Reynaud C, Carriere M. 2008. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253:137–146.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, 2008. Induction of mesothelioma in p53+/-mouse by intraperitoneal application of multi-wall carbon nanotube. Toxicological Sci 33:105–116.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.