455
Views
75
CrossRef citations to date
0
Altmetric
Research Article

Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development

, , , , , , & show all
Pages 381-398 | Received 27 Oct 2010, Accepted 24 Mar 2011, Published online: 16 May 2011

References

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Tot Environ 407:1461–1468.
  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102–255109.
  • American Society for Testing and Materials (ASTM). 1998. Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) E-1439–E1498.
  • Bantle JA, Dawson DA. 1988. Uninduced rat liver microsomes as a metabolic activation system for the frog embryo. In: Adams WJ, Chapman GA, Landis WF, editors. Aquatic toxicology and hazard assessment, ASTM STP 971. Philadelphia, PA: ASTM. p 316.
  • Baun A, Hartmann NB, Grieger K, Kusk KO. 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395.
  • Behra R, Krug H. 2008. Nanoparticles at large. Nat. Nanotechnology 3:253–254.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47.
  • Browning LM, Lee KJ, Huang T, Nallathamby PD, Lowman JE, Xu XN. 2009. Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1:138–152.
  • Chalmers AD, Slack JMW. 1998. Development of the gut in Xenopus laevis. Dev Dynam 212:509–521.
  • Chirico G, Beretta S. 1999. Polyion character of globular proteins detected by translational and rotational diffusion. Phys Rev E 60:2148–2153.
  • Colliex C. 1986. Electron energy-loss spectroscopy: Analysis and imaging of biological specimens. Ann NY Acad Sci 483:311–326.
  • Dawson DA. 1991. Additive incidence on development malformation for Xenopus embryos exposed to a mixture of ten aliphatic carboxylic acids. Teratology 44:531–546.
  • Dawson DA, Bantle JA. 1987. Development of a reconstituted water medium and preliminary validation of the Frog Embryo Teratogenesis Assay-Xenopus (FETAX). J Appl Toxicol 7:237–244.
  • Dumont JN, Schultz TW, Buchanan M, Kao G. 1983. Frog Embryo Teratogenesis Assay-Xenopus (FETAX) – a short-term assay applicable to complex environmental mixtures. In: Waters MD, Sandhu SS, Lewtas J, Claxton L, Chernoff N, Nesnow S, editors. Short-term bioassays in the analysis of complex environmental mixtures. New York: Plenum Press. pp 393–405.
  • Federici G, Shaw BJ, Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84:415–430.
  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U. 2010. assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquat Toxicol 100:218–228.
  • Finney DJ. 1971. Probit analysis. 3rd ed. Cambridge: Cambridge University Press.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol 41:8484–8490.
  • Gregory J. 2006. Particles in water: Properties and processes. Boca Raton, FL: Taylor & Francis.
  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS. 2009. Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415.
  • Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS. 2007. Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.
  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier H-C. 2011. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res 45:179–190.
  • Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN. 2009. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43:6349–6356.
  • Jani P, Halbert G, Langridge J, Florence A. 1990. Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J Pharm Pharmacol 42:821–826.
  • Johnston B, Scown TM, Moger J, Cumberland S, Baalousha M, Linge K, van Aerle R, Jarvis K, Lead JR, Tyler CR. 2010. Bioavailability of nanoscale metaloxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151.
  • Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239.
  • Kahru A, Dubourguier H-C. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119.
  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K. 2008. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini review. Sensors 8:5153–5170.
  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in vitro 23:1116–1122.
  • Kashiwada S. 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perpect 114:1697–1702.
  • Krysanov EYu, Pavlov DS, Demidova TB, Dgebuadze YuYu. 2010. Effect of nanoparticles on aquatic organisms. Biol Bull 37:406–412.
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XN. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1:133–143.
  • Lewinski N, Colvin V, Drezek R. 2008. Cytotoxicity of nanoparticles. Small 4:26–49.
  • Luo SQ, Plowman MC, Hopfer SM, Sunderman FW Jr. 1993. Embryotoxicity and teratogenicity of Cu2+ and Zn2+ for Xenopus laevis, assayed by the FETAX procedure. Ann Clin Lab Sci 23:111–120.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976.
  • Moos PJ, Chung K, Woessner D, Honneggar M, Shane Cutler N, Veranth JM. 2010. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23:733–739.
  • Mouchet F, Landois P, Sarremejean E, Bernard G, Puech P, Pinelli E, Flahaut E, Gauthier L. 2008. Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87:127–137.
  • Nations S, Long M, Wages M, Canas J, Maul JD, Theodorakis C, Cobb GP. 2011. Effects of ZnO nanomaterials on Xenopus laevis growth and development. 2010. Ecotoxicol Environ Saf 74:203–210.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Nieuwkoop PD, Faber J. 1956. Normal table of Xenopus laevis (Daudin). Amsterdam: North Holland Publishing Co.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.
  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141.
  • Prins FA, Cornelese-ten Velde I, de Heer E. 2006. Reflection contrast microscopy: the bridge between light and electron microscopy. In: Taatjes DJ, Mossman BT, editors. Cell imaging techniques. Methods and protocols. Totowa: Humana Press. pp 363–401.
  • Saunders M. 2009. Transplacental transport of nanomaterials. WIREs Nanomed Nanobiotechnol 1:671–684.
  • Scown TM, van Aerle R, Tyler CR. 2010. Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670.
  • Sharma VK. 2009. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment – a review. J Environ Sci Heal A 44:1485–1495.
  • Steinbach PJ, Ionescu R, Matthews CR. 2002. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding. Biophys J 82:2244–2255.
  • Thisse C, Thisse B. 2008. High resolution in situ hybridization on whole-mount zebrafish embryo. Nat Protoc 3:59–69.
  • Ward JE, Kach DJ. 2009. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68:137–142.
  • Wick P, Malek A, Manser P, Meili D, Maeder-Althaus D, Diener L, Diener P-A, Zisch A, Krug HF, von Mandach U. 2010. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect 118:432–436.
  • Yamamoto A, Honma R, Sumita M, Hanawa T. 2004. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mat Res 68A:244–256.
  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC. 2008. Stability of commercial metal oxide nanoparticles in water. Water Res 42:2201–2212.
  • Zhu X, Wang J, Zhang X, Cahng Y, Chen Y. 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:195103.
  • Zhu X, Zhu L, Duan Z, QI R, Li Y, Lang Y. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A 43:278–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.