431
Views
67
CrossRef citations to date
0
Altmetric
Research Article

Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles

, , &
Pages 837-846 | Received 09 Aug 2010, Accepted 02 Sep 2011, Published online: 12 Dec 2011

References

  • Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR. 2009. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Coll Surf B 68:83–87.
  • Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. 2009. The relationship between pH and zeta potential of 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 3:276–283.
  • Bergman L, Rosenholm J, Öst A-B, Duchanoy A, Kankaanpää P, Heino J, Lindén M. 2008. On the complexity of electrostatic suspension stabilization of functionalized silica nanoparticles for biotargeting and imaging applications. J Nanomaterials 712514.
  • Deguchi S, Yamazaki T, Mukai S, Usami R, Horikoshi K. 2007. Stabilization of C60 nanoparticles by protein adsorption and its implications for toxicity studies. Chem Res Toxicol 20:854–858.
  • Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. 2009. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20:455101.
  • Dockery DW. 2001. Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 109:483–486.
  • Driscoll KE, Lindenschmidt RC, Maurer JK, Perkins L, Perkins M, Higgins J. 1991. Pulmonary response to inhaled silica or titanium dioxide. Toxicol Appl Pharmacol 111:201–210.
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. 2008. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Resp Cell Mol Biol 38:371–376.
  • Gilmour PS, Brown DM, Lindsay TG, Beswick PH, MacNee W, Donaldson K. 1996. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occup Environ Med 53:817–822.
  • Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI. 2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115:403–409.
  • Hang J, Shi L, Feng X, Xiao L. 2009. Electrostatic and electrosteric stabilization of aqueous suspensions of barite nanoparticles. Powder Technol 192:166–170.
  • Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, 2009. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22:543–553.
  • Jeng HA, Swanson J. 2006. Toxicity of metal oxide nanoparticles in mammalian cells. J Env Sci Health A 41:2699–2711.
  • Jiang J, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11:77–89.
  • Karlsson HL, Cronholm P, Gustafsson J, Möller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.
  • Kosmulski M. 2001. Chemical Properties of Material Surfaces. New York: Marcel Dekker.
  • Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW. 2009. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39.
  • Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin E, 2007. Nucleation of protein fibrillation by nanoparticles. Proc Nat Acad Sci 104:8691–8696.
  • Luik AI, Naboka YN, Mogilevich SE, Hushcha TO, Mischenko NI. 1998. Study of human serum albumin structure by dynamic light scattering: two types of reactions under different pH and interaction with physiologically active compounds. Spectrochim Acta A 54:1503–1507.
  • Lynch I, Dawson KA. 2008. Protein-nanoparticle interactions. NanoToday 3:40–47.
  • Meißner T, Potthoff A, Richter V. 2009. Suspension characterization as important key for toxicological investigations. J Phys Conf Ser 170:012012.
  • Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Branfield JF. 2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316:1600–1603.
  • Nemmar A, Vanbilloen H, Hoylaerts MF, Hoet PHM, Verbruggen A, Nemery B. 2001. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Resp Crit Care Med 164:1665–1668.
  • Norde W, Giacomelli CE. 2000. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J Biotech 79:259–268.
  • Nurkiewicz TR, Porter DW, Hubbs AF, Stone S, Chen BT, Frazer DG, 2009. Pulmonary nanoparticle exposure disrupts systemic microvascular nitric oxide signaling. Toxicol Sci 110:191–203.
  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, 2002. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543.
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. 2007. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607.
  • Pratten MK, Lloyd JB. 1986. Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. Biochim Biophys Acta 881:307–313.
  • Rezwan K, Meier LP, Rezwan M, Vörös J, Textor M, Gauckler LJ. 2004. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-vis measurements. Langmuir 20:10055–10061.
  • Schulze C, Kroll A, Lehr CM, Schäfer UF, Becker K, Schnekenburger J, 2008. Not ready to use—overcoming pitfalls when dispersing nanoparticles in physiological media. Nanotoxicology 2:51–61.
  • Thomassen LCJ, Aerts A, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, 2010. Synthesis and characterization of stable monodisperse silica nanoparticle sols for in vitro cytotoxicity testing. Langmuir 26:328–335.
  • Tolpekin VA, Duits MHG, van den Ende D, Mellema J. 2004. Aggregation and breakup of colloidal particle aggregates in shear flow, studied by video microscopy. Langmuir 20:2614–2627.
  • Vamanu CI, Høl PJ, Allouni ZE, Elsayed S, Gjerdet NR. 2008. Formation of potential titanium antigens based on protein binding to titanium dioxide nanoparticles. Int J Nanomedicine 3:69–74.
  • Wu W, Sun X, Yu Y, Hu J, Zhao L, Liu Q, 2008. TiO2 particles promote β-amyloid fibrillation in vitro. Biochem Biophys Res Comm 373:315–318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.