317
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung

, , , , , , & show all
Pages 867-879 | Received 03 Mar 2011, Accepted 19 Sep 2011, Published online: 24 Oct 2011

References

  • Bowden DH. 1990. Experimental induction of pulmonary fibrosis. In: Gil J, editor. Lung Biology in Health and Disease, Vol. 47. New York, Basel: Marcel Dekker. pp 735–752.
  • Brown DM, Beswick PH, Donaldson K. 1999. Induction of nuclear translocation of NF-kappaB in epithelial cells by respirable mineral fibres. J Pathol 189:258–264.
  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC. 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445.
  • Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, 2010. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology 272:39–45.
  • Dikalov S, Kirilyuk I, Grigorwv I. 1996. Spin trapping of O-, C-, and S-centered radicals and peroxynitrite by 2H-imidazole-1-oxides. Biochem Biophys Res Commun 218:616–622.
  • Dikalov S, Skatchkov M, Bassenge E. 1997. Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem Biophys Res Commun 230:54–57.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. 2006. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92:5–22.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5.
  • Elgrabli D, Abella-Gallart S, Robidal F, Rogerieux F, Boczkowski J, Lacroix G. 2008. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology 253:131–136.
  • Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, 2009. Cross-Talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9:36–43.
  • Fubini B, Mollo L. 1995. Role of iron in the reactivity of mineral fibers. Toxicol Lett 82–83:951–960.
  • Gilmour PS, Brown DM, Lindsay TG, Beswick PH, MacNee W, Donaldson K. 1996. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occup Environ Med 53:817–822.
  • Gundersen HJ, Jensen EB. 1987. The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263.
  • Gundersen HJ. 1977. Notes on the estimation of the numerical density of arbitrary profiles. J Microsc 111:219–223.
  • Hirano S, Fujitani Y, Furuyama A, Kanno S. 2010. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharmacol 249:8–15.
  • Jacobson NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 4:207–246.
  • Jung A, Allen L, Nyengaard JR, Gundersen HJ, Richter J, Hawgood S, Ochs M. 2005. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice. Anat Rec A Discov Mol Cell Evol Biol 286:885–890.
  • Kida H, Yoshida M, Hoshino S, Inoue K, Yano Y, Yanagita M, 2005. Protective effect of Il-6 on alveolar epithelial cell death induced by hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 288:L342–L349.
  • Knudsen L, Ochs M, Mackay R, Townsend P, Deb R, Mühlfeld C, 2007. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice. Respir Res 8:70.
  • Lacerda L, Bianco A, Prato M, Kostarelos K. 2006. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470.
  • Lang DS, Schocker H, Hockertz S. 2001. Effects of crocidolite asbestos on human bronchoepithelial-dependent fibroblast stimulation in coculture: the role of Il-6 and GM-CSF. Toxicology 159:81–89.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112:468–481.
  • Madl AK, Carosino C, Pinkerton K. 2009. Airborne particles and structural remodeling of the lungs. In: Gehr P, Mühlfeld C, Rothen-Rutishauser B, Blank F, editors. Lung Biology in Health and Disease, Vol 241. New York: Informa Healthcare. pp 167–192.
  • Mayhew TM. 2008. Taking tissue samples from the placenta: an illustration of principles and strategies. Placenta 29:1–14.
  • Maynard AD. 2007. Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12.
  • McNeilly JD, Heal MR, Beverland IJ, Howe A, Gibson MD, Hibbs LR, 2004. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro. Toxicol Appl Pharmacol 196:95–107.
  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–L97.
  • Miller BE, Hook GER. 1990. Hypertrophy and hyperplasia of alveolar type II cells in response to silica and other pulmonary toxicants. Environ Health Perspect 85:15–23.
  • Miller MR, Borthwick SJ, Shaw CA, McLean SG, McClure D, Mills NL, 2009. Direct impairment of vascular function by diesel exhaust particulate through reduced bioavailability of endothelium-derived nitric oxide induced by superoxide free radicals. Environ Health Perspect 117:611–616.
  • Mühlfeld C, Nyengaard JR, Mayhew TM. 2010. A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovasc Pathol 19:65–82.
  • Mühlfeld C, Rothen-Rutishauser B, Blank D, Vanhecke D, Gehr P, Ochs M. 2007. Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 4:11.
  • Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Ochs M, Gehr P. 2008. Interactions of nanoparticles with pulmonary structures and cellular responses. Am J Physiol Lung Cell Mol Physiol 294:L817–L829.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231.
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600.
  • Ochs M. 2006. A brief update on lung stereology. J Microsc 222:188–200.
  • Pascu SI, Arrowsmith RL, Bayly S, Brayshaw S, Hu Z. 2010. Towards nanomedicines: design protocols to assemble, visualize and test carbon nano tube probes for multi-modality biomedical imaging. Philos Transact A Math Phys Eng Sci 368:3683–3712.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Rao GV, Tinkle S, Weissman DN, Antonini JM, Kason ML, Salmen R, 2003. Efficacy of a technique for exposing the mouse lung to particles aspirated from the pharynx. J Toxicol Environ Health A 66:1441–1452.
  • Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. 2011. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes untratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol 26:357–367.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 4:747–751.
  • Salvador-Morales C, Townsend P, Flahaut E, Vénien-Bryan C, Vlandas A, Green MLH, Sim RB. 2007. Binding of pulmonary surfactant proteins to carbon nanotubes; potential for damage to lung immune defense mechanisms. Carbon 45:607–617.
  • Scherle W. 1970. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26:57.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708.
  • Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, 2008a. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–590.
  • Shvedova AA, Kagan VE. 2009. The role of nanotoxicology in realizing the helping without harm paradigm of nanomedicine: lessons from studies of pulmonary effects of single-walled carbon nanotubes. J Intern Med 267:106–118.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, 2008b. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295:L552–L565.
  • Sterio DC. 1984. The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136.
  • Strieter RM, Mehrad B. 2009. New mechanisms of pulmonary fibrosis. Chest 136:1364–1370.
  • Travaglione S, Bruni BM, Falzano L, Filippini P, Fabbri A, Paoletti L, Fiorentini C. 2006. Multinucleation and pro-inflammatory cytokine release promoted by fibrous fluoro-edenite in lung epithelial A549 cells. Toxicol In Vitro 20:841–850.
  • Unfried K, Albrecht C, Klotz LO, von Mikecz A, Grether-Beck S, Schins RPF. 2007. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 1:1–20.
  • van der Zande M, Junger R, Walboomers F, Jansen JA. 2011. Carbon nanotubes in animal models: a systematic review on toxic potential. Tissue Eng Part B Rev 17:57–69.
  • Vedel-Jensen EB, Gundersen HJ. 1993. The rotator. J Microsc 170:35–44.
  • Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, 2010. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73:410–422.
  • Weibel ER, Hsia CC, Ochs M. 2007. How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol 102:459–467.
  • Weibel ER. 1979. Stereological methods. Practical methods for biological morphometry. Vol.1. New York: Academic Press.
  • WHO. 1997. Determination of airborne fibre number concentrations. A recommended method, by phase-contrast optical microscopy membrane filter method.
  • Wirkes A, Jung K, Ochs M, Mühlfeld C. 2010. Allometry of the mammalian intracellular pulmonary surfactant system. J Appl Physiol 109:1662–1669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.