374
Views
46
CrossRef citations to date
0
Altmetric
Research Article

NIST gold nanoparticle reference materials do not induce oxidative DNA damage

, , , , , , , , , & show all
Pages 21-29 | Received 23 May 2011, Accepted 09 Sep 2011, Published online: 02 Nov 2011

References

  • Aitken RJ, Hankin SM, Tran CL, Donaldson K, Stone V, Cumpson P, 2008. A multidisciplinary approach to the identification of reference materials for engineered nanoparticle toxicology. Nanotoxicol 2:71–78.
  • Auffan M, Rose J, Orsiere T, Meo MD, Thill A, Zeyons O, 2009. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicol 3:161–171.
  • Birincioglu M, Jaruga P, Chowdhury G, Rodriguez H, Dizdaroglu M, Gates KS. 2003. DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). J Am Chem Soc 125:11607–11615.
  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327.
  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. 2002. Free radical-induced damage to DNA: mechanisms and measurement. Free Rad Bio Med 32:1102–1115.
  • Dizdaroglu M. 1998. Facts about the artifacts in the measurement of oxidative DNA base damage by gas chromatography mass spectrometry. Free Rad Res 29:551–563.
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. 2004. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 15:897–900.
  • Greenberg MM, Hantosi Z, Wiederholt CJ, Rithner CD. 2001. Studies on N4-(2-deoxy-D-pentofuranosyl)-4,6-diamino-5-formamidopyrimidine (Fapy dA) and N6-(2-deoxy-d-pentofuranosyl)-6-diamino-5-formamido-4-hydroxypyrimidine (Fapy dG). Biochem 40:15856–15861.
  • Grigg J, Tellabati A, Rhead S, Almeida GM, Higgins JA, Bowman KJ, Jones GD, Howes PB, 2009. DNA damage of macrophages at an air-tissue interface induced by metal nanoparticles. Nanotoxicol 3:348–345.
  • Hammer B, Norskov JK. 1995. Why gold is the noblest of all the metals. Nature 376:238–240.
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE(-/-) mice. Particle Fibre Toxicol 6:2.
  • Jaruga P, Dizdaroglu M. 2008. 8,5′-Cyclopurine-2′-deoxynucleosides in DNA: mechanisms of formation, measurement, repair and biological effects. DNA Repair 7:1413–1425.
  • Jaruga P, Theruvathu J, Dizdaroglu M, Brooks PJ. 2004. Complete release of (5′ S)-8,5′-cyclo-2′-deoxyadenosine from dinucleotides, oligodeoxynucleotides and DNA, and direct comparison of its levels in cellular DNA with other oxidatively induced DNA lesions. Nucl Acids Res 32:e87.
  • Jaruga P, Xiao Y, Nelson BC, Dizdaroglu M. 2009. Measurement of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines in DNA in vivo by liquid chromatography/isotope-dilution tandem mass spectrometry Biochem Biophys Res Commun 386:656–660.
  • Kamiya H, Miura H, Murata-Kamiya N, Ishikawa H, Sakaguichi T, Inoue H, 1995. 8-hydroxyadenine (7,8-dihydro-8-oxoadenine) induces misincorporation in in vitro DNA synthesis and mutations in NIH 3T3 cells. Nucl Acids Res 23:2893–2899.
  • Kang B, Mackey MA, El-Sayed MA. 2010. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519.
  • Kang JS, Yum YN, Kim JH, Song H, Jeong J, Lim YT, 2009. Induction of DNA damage in L5178Y cells treated with gold nanoparticle. Biomol Therapeut 17:92–97.
  • Knasmuller S, Mersch-Sundermann V, Kevekordes S, Darroudi F, Huber WW, Hoelzl C, 2004. Use of human derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicol 198:315–328.
  • Li JJ, Zou L, Hartono D, Ong CN, Bay BH, Yung LYL. 2008. Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv Mat 20:138–142.
  • Lin MH, Hsu TS, Yang PM, Tsai MY, Perng TP, Lin LY. 2009. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer. Int J Rad Biol 85:214–226.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, 2006. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle Fibre Toxicol 2:1–35.
  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, 2009. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076.
  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, 2007. Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949.
  • Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, 2006. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773.
  • Petersen EJ, Nelson BC. 2010. Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650.
  • Pfaller T, Colognato R, Nelissen I, Favilli F, Casals E, Ooms D, 2010. The suitability of different cellular in vitro immunotoxicity and genotoxicity methods for the analysis of nanoparticle-induced events. Nanotoxicol 4:52–72.
  • Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, 2009. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445.
  • Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R. 2008. Pertubational profiling of nanomaterial biologic activity. Proc Natl Acad Sci USA 105:7387–7392.
  • Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. 2005. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654.
  • Singh S, D'Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV. 2010. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34:294–301.
  • Stone V, Nowack B, Baun A, van den Brink N, von der Kammer F, Dusinska M, 2010. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 408:1745–1754.
  • Stone V, Johnston H, Schins RPF. 2009. Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626.
  • Tsoli M, Kuhn H, Brandau W, Esche H, Schmid G. 2005. Cellular uptake and toxicity of Au55 clusters. Small 1:841–844.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.