341
Views
61
CrossRef citations to date
0
Altmetric
Orginal Articles

Transmissions of serotonin, dopamine, and glutamate are required for the formation of neurotoxicity from Al2O3-NPs in nematode Caenorhabditis elegans

, , , &
Pages 1004-1013 | Received 31 Jan 2012, Accepted 26 Apr 2012, Published online: 14 Jun 2012

References

  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR. 2005. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260.
  • Anderson GL, Boyd WA, Williams PL. 2001. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem 20:833–838.
  • Anderson GL, Cole RD, Williams PL. 2004. Assessing behavioral toxicity with Caenorhabditis elegans. Environ Toxicol Chem 23:1235–1240.
  • Avery I. 1993. The genetics of feeding in Caenorhabditis elegans. Genetics 133:897–917.
  • Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94.
  • Brockie PJ, Maricq AV. 2006. Ionotropic glutamate receptors: genetics, behavior and electrophysiology. In: Wormbook, editor. The C. elegans research community, wormbook. doi/10.1895/wormbook.1.61.1.
  • Carnell L, Illi J, Hong SW, McIntire SI. 2005. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. J Neurosci 25:10671–10681.
  • Chase D, Pepper JS, Koelle MR. 2004. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103.
  • Chase DL, Koelle MR. 2007. Biogenic amine neurotransmitters in C. elegans. In: Wormbook, editor. The C. elegans research community, wormbook. doi/10.1895/wormbook.1.132.1.
  • de Bono M, Maricq AV. 2005. Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501.
  • Donkin SG, Dusenbery DB. 1993. A soil toxicity test using the nematode Caenorhabditis elegans and an effective method of recovery. Arch Environ Contam Toxicol 25:145–151.
  • Du M, Wang D-Y. 2009. The neurotoxic effects of heavy metal exposure on GABAergic nervous system in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 27:314–320.
  • Hills T, Brockie PJ, Maricq AV. 2004. Dopamine and glutamate control area restricted search behavior in Caenorhabditis elegans. J Neurosci 24:1217–1225.
  • Hobson RJ, Geng J, Gray AD, Komuniecki RW. 2003. SER-7b, a constitutively active galphas coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurosci 87:22–29.
  • Hu Y, Gao J. 2010. Potential neurotoxicity of nanoparticles. Int J Pharmaceut 394:115–121.
  • Jayanthi LD, Apparsundaram S, Malone MD, Ward E, Miller DM, Eppler M, 1998. The Caenorhabditis elegans gene T23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol Pharmacol 54:601–609.
  • Jin Y, Jorgensen E, Hartwieg F, Horvitz HR. 1999. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J Neurosci 19:539–548.
  • Kano T, Brockie PJ, Sassa T, Fujimoto H, Kawahara Y, Ilno Y, 2008. Memory in Caenorhabditis elegans is mediated by NMDA-type ionotropic glutamate receptors. Curr Biol 18:10101–11015.
  • Khanna N, Cressmann CP 3rd, Tatara CP, Williams PL. 1997. Tolerance of the nematode Caenorhabditis elegans to pH, salinity, and hardness in aquatic media. Arch Environ Contam Toxicol 32:110–114.
  • Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, 2008. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28.
  • Li Y–X, Wang Y, Hu Y–O, Zhong J–X, Wang D-Y. 2011. Modulation of the assay system for the sensory integration of 2 sensory stimuli that inhibit each other in nematode Caenorhabditis elegans. Neurosci Bull 27:69–82.
  • Li Y-X, Yu S-H, Wu Q-L, Tang M, Pu Y-P, Wang D-Y. 2012. Chronic Al2O3-nanoparticle exposure causes meurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J Hazard Mater doi: 10.1016/j.hazmat.2012.03.083.
  • Lints R, Emmons SW. 1999. Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGF beta family signaling pathway and Hox gene. Development 126:5819–5831.
  • Loer CM, Kenyon CJ. 1993. Serotonin-deficient mutants and male mating behavior in the nematode Caenorhabditis elegans. J Neurosci 13:5407–5417.
  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. 2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352.
  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL. 2009a. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330.
  • Ma H, Kabengi NJ, Bertsch PM, Unrine JM, Glenn TC, Williams PL. 2011. Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ Pollut 159:1473–1480.
  • Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, 2009b. Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity. Biomaterials 31:99–105.
  • Meyer JN, Lord CA, Yang XY, Turner EA, Badireddy AR, Marinakos SM, 2010. Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat Toxicol 100:140–150.
  • Mohan N, Chen C, Hsieh H, Wu Y, Chang H. 2010. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 10:3692–3699.
  • Olde B, McCombie WR. 1997. Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62.
  • Oszlánczi G, Vezér T, Sárközi L, Horváth E, Kónya Z, Papp A. 2010. Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol Environ Saf 73:2004–2009.
  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A. 2009. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS One 4:e6622.
  • Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, 2011. Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183.
  • Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, 2009. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21.
  • Rand JB, Russell RL. 1984. Choline acetyltransferase-deficient mutants of the nematode Caenorhabditis elegans. Genetics 106:227–248.
  • Ranganathan R, Cannon SC, Horvitz HR. 2004. MOD-1 is a serotonin-gated chloride channel modulates locomotory behaviour in C. elegans. Nature 408:470–475.
  • Ranganathan R, Sawin ER, Trent C, Horvitz HR. 2001. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and –independent activities of luoxetine. J Neurosci 21:5871–5884.
  • Riddle DL, Blumenthal T, Meyer BJ, Priess JR. 1997. C. elegans II. Plainview, New York: Cold Spring Harbor Laboratory Press.
  • Roh J, Sim SJ, Yi J, Park K, Chung KH, Ryu D, 2009. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940.
  • Sharma HS, Sharma A. 2007. Nanoparticles aggravate heat stress induced cognitive deficits, blood-brain barrier disruption, edema formation and brain pathology. Prog Brain Res 162:245–273.
  • Sharma HS, Sharma A. 2009. New perspectives on nanoneuroscience, nanoneuropharmacology and nanoneurotoxicology. Nanomedicine 4:509–513.
  • Sharma HS. 2007. Nanoneuroscience: emerging concepts on nanoneurotoxicity and nanoneuroprotection. Nanomedicine 2:753–758.
  • Shen L–L, Hu Y–O, Cai T, Lin X–F, Wang D-Y. 2010. Regulation of longevity by genes required for the functions of AIY interneuron in nematode Caenorhabditis elegans. Mech Ageing Dev 131:732–738.
  • Strutz-Seebohm N, Werner M, Madsen DM, Seebohm G, Zheng Y, Walker CS, 2003. Functional analysis of Caenorhabditis elegans glutamate receptor subunits by domain transplantation. J Biol Chem 278:44691–44701.
  • Sugiura M, Fuke S, Suo S, Sasagawa N, Van Tol HH, Ishiura S. 2005. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. J Neurochem 94:1146–1157.
  • Sze JY, Victor M, Loer C, Shi Y, Ruvkun G. 2000. Food and metabolic signaling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403:560–564.
  • Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, 2010. Silver nanoparticle induced blood-brain inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118:160–170.
  • Wang D–Y, Liu P–D, Xing X-J. 2010. Pre-treatment with mild UV irradiation increases the resistance of nematode Caenorhabditis elegans to toxicity on locomotion behaviors from metal exposure. Environ Toxicol Pharmacol 29:213–222.
  • Wang D–Y, Xing X-J. 2008. Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. J Environ Sci 20:1132–1137.
  • Wang D–Y, Xing X-J. 2009. Pre-treatment with mild metal exposure suppresses the neurotoxicity on locomotion behavior induced by the subsequent severe metal exposure in Caenorhabditis elegans. Environ Toxicol Pharmacol 28:459–464.
  • Wang D-Y, Yang Y-C, Wang Y. 2009a. Aluminum toxicosis causing transferable defects from exposed animals to their progeny in Caenorhabditis elegans. Clin J Prev Med 43:45–51; in Chinese.
  • Wang H, Wick RL, Xing B. 2009c. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177.
  • Wang J, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC, 2009d. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology 30:926–933.
  • Wang Z, Zhao J, Li F, Gao D, Xing B. 2009b. Adsorption and inhibition of acetylcholinesterase by different nanoparticles. Chemosphere 77:67–73.
  • Ward A, Walker VJ, Feng Z, Xu XZS. 2009. Cocaine modulates locomotion behavior in C. elegans. PLoS One 4:e5946.
  • Williams PL, Dusenbery DB. 1988. Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol Ind Health 4:469–478.
  • Williams PL, Dusenbery DB. 1990. A promising indicator of neurobehavioral toxicity using the nematode Caenorhabditis elegans and computer tracking. Toxicol Ind Health 6:425–440.
  • Wu S, Lu J–H, Rui Q, Yu S–H, Cai T, Wang D-Y. 2011. Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ Toxicol Pharmacol 31:179–188.
  • Wu Z, Du Y, Xue H, Wu Y, Zhou B. 2012. Aluminum induces neurodegeneration and its toxicity from increased iron accumulation and reactive oxygen species (ROS) production. Neurobiol Aging 33: doi: 10.1016/j.neurobiolaging.2010.06.018.
  • Xing X–J, Du M, Xu X–M, Rui Q, Wang D-Y. 2009a. Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 28:104–110.
  • Xing X–J, Du M, Zhang Y–F, Wang D-Y. 2009b. Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans. J Environ Sci 21:1684–1694.
  • Xing X–J, Guo Y–L, Wang D-Y. 2009c. Using the larvae nematode Caenorhabditis elegans to evaluate neurobehavioral toxicity to metallic salts. Ecotoxicol Environ Saf 72:1819–1823.
  • Xing X–J, Rui Q, Du M, Wang D-Y. 2009d. Exposure to lead and mercury in young larvae induces more severe deficits in neuronal survival and synaptic function than in adult nematodes. Arch Environ Contam Toxicol 56:732–741.
  • Ye B–P, Rui Q, Wu Q–L, Wang D–Y. 2010. Metallothioneins are required for formation of cross-adaptation response to neurobehavioral toxicity from lead and mercury exposure in nematodes. PLoS One 5:e14052.
  • Ye H–Y, Ye B–P, Wang D-Y. 2008. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans. Neurobiol Learn Mem 90:10–18.
  • Yu S–H, Rui Q, Cai T, Li Y–X, Wang D-Y. 2011. Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ Toxicol Pharmacol 32:233–241.
  • Zhang H, He X, Zhang Z, Zhang P, Li Y, Ma Y, 2011. Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730.
  • Zhang Y–F, Ye B–P, Wang D-Y. 2010. Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 59:129–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.