685
Views
89
CrossRef citations to date
0
Altmetric
Orginal Articles

Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers

, , , , , & show all
Pages 1014-1027 | Received 22 Nov 2011, Accepted 03 May 2012, Published online: 14 Jun 2012

References

  • Abder-Rahman HA, Nusair S. 2007. 8-Hydroxy-2′-deoxyguanosine (8-OHdG) as a short-term predictor of regional and occupational health problems. J UOEH 29(3):247–258.
  • Armbruster C, Dekan G, Hovorka A. 1996. Granulomatous pneumonitis and mediastinal lymphadenopathy due to photocopier toner dust. Lancet 348(9028):690.
  • Baan RA. 2007. Carcinogenic hazards from inhaled carbon black, titanium dioxide, and talc not containing asbestos or asbestiform fibers: recent evaluations by an IARC Monographs Working Group. Inhal Toxicol 19(Suppl 1):213–228.
  • Baeza-Squiban A, Bonvallot V, Boland S, Marano F. 1999. Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol Toxicol 15(6):375–380.
  • Balakrishnan M, Das A. 2010. Chromosomal aberration of workers occupationally exposed to photocopy machines in sular, south india. Int J Pharm Bio Sci 1(4):B304–B307.
  • Bar-Sela S, Shoenfeld Y. 2008. Photocopy machines and occupational antiphospholipid syndrome. Isr Med Assoc J 10(1):52–54.
  • Barthel M, Pedan V, Hahn O, Rothhardt M, Bresch H, Jann O, 2011. XRF-analysis of fine and ultrafine particles emitted from laser printing devices. Environ Sci Technol 45(18):7819–7825.
  • Bello D, Martin J, Sun Q, Santeufemio C, Shafer M, Demokritou P. 2012. Physicochemical and morphological characterization of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology ( Posted online on May 2, 2012. doi:10.3109/17435390.2012.689883).
  • Boczkowski J, Hoet P. 2010. What's new in nanotoxicology? Implications for public health from a brief review of the 2008 literature. Nanotoxicology 4(1):1–14.
  • Bonner JC. 2010. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc 7(2):138–141.
  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. 2006. Biomarkers of oxidative damage in human disease. Clin Chem 52(4):601–623.
  • Donaldson K, Tran L, Jimenez L, Duffin R, Newby D, Mills N, 2005. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure. Particle Fibre Toxicol 2(1):10.
  • Driscoll KE, Carter JM, Hassenbein DG, Howard B. 1997. Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 105(Suppl 5):1159–1164.
  • Eisen EA, Costello S, Chevrier J, Picciotto S. 2011. Epidemiologic challenges for studies of occupational exposure to engineered nanoparticles; a commentary. J Occup Environ Med 53(6 Suppl):S57–S61.
  • Frampton MW. 2007. Does inhalation of ultrafine particles cause pulmonary vascular effects in humans? Inhal Toxicol 19(Suppl 1):75–79.
  • Frampton MW, Stewart JC, Oberdorster G, Morrow PE, Chalupa D, Pietropaoli AP, 2006. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ Health Perspect 114(1):51–58.
  • Fujimoto C, Kido H, Sawabuchi T, Mizuno D, Hayama M, Yanagawa H, 2009. Evaluation of nasal IgA secretion in normal subjects by nasal spray and aspiration. Auris Nasus Larynx 36(3):300–304.
  • Gadhia PK, Patel D, Solanki KB, Tamakuwala DN, Pithawala MN. 2005. A preliminary cytogenetic and hematological study of photocopying machine operators. Indian J Occup Environ Med 9(1):22–25.
  • Gardiner K, van Tongeren M, Harrington M. 2001. Respiratory health effects from exposure to carbon black: results of the phase 2 and 3 cross sectional studies in the European carbon black manufacturing industry. Occup Environ Med 58(8):496–503.
  • Ghio AJ, Smith CB, Madden MC. 2012. Diesel exhaust particles and airway inflammation. Curr Opin Pulm Med 18(2):144–150.
  • Goud KI, Hasan Q, Balakrishna N, Rao KP, Ahuja YR. 2004. Genotoxicity evaluation of individuals working with photocopying machines. Mutat Res 563(2):151–158.
  • Guo B, Zebda R, Drake SJ, Sayes CM. 2009. Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Part Fibre Toxicol 6:4.
  • Gwinn MR, Vallyathan V. 2006. Nanoparticles: health effects–pros and cons. Environ Health Perspect 114(12):1818–1825.
  • He C, Morawska L, Taplin L. 2007. Particle emission characteristics of office printers. Environ Sci Technol 41(17):6039–6045.
  • Howarth PH, Persson CG, Meltzer EO, Jacobson MR, Durham SR, Silkoff PE. 2005. Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol 115(3 Suppl 1):S414–S441.
  • Hurst JR, Wilkinson TM, Perera WR, Donaldson GC, Wedzicha JA. 2005. Relationships among bacteria, upper airway, lower airway, and systemic inflammation in COPD. Chest 127(4):1219–1226.
  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, 2009. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14.
  • Laskin SV, Laumbach RJ, Kipen HM. 2007. Inflammatory cytokines and lung toxicity. In: Descotes RV, Ha J, editors. Cytokines in human health- immunotoxicology, pathology, and therapeutic applications.
  • Lee C-W, Hsu D-J. 2007. Measurements of fine and ultrafine particles formation in photocopy centers in Taiwan. Atmos Environ 41:6598–6609.
  • Lee MW, Chen ML, Lung SC, Tsai CJ, Yin XJ, Mao IF. 2010. Exposure assessment of PM2.5 and urinary 8-OHdG for diesel exhaust emission inspector. Sci Total Environ 408(3):505–510.
  • Li JJ, Muralikrishnan S, Ng CT, Yung LY, Bay BH. 2010. Nanoparticle-induced pulmonary toxicity. Exp Biol Med (Maywood) 235(9):1025–1033.
  • Li N, Nel AE. 2011. Feasibility of biomarker studies for engineered nanoparticles: what can be learned from air pollution research. J Occup Environ Med 53(6 Suppl):S74–S79.
  • Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699.
  • Liu WX, Wang HF, Wang TC, Gu YQ, Yan L. 2008. Actute toxicity of nano-sized Zn oxide in ICR mice via intratracheal instillation. J Environ Occup Med 25(4):360–364.
  • Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K, Poulsen HE. 1993. 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 40(2–3):391–404.
  • Manikantan P, Balachandar V, Sasikala S, Mohanadevi S, Lakshmankumar B. 2010. DNA Damage in workers occupationally exposed to photocopying machines in Coimbatore south India, using comet assay. Internet J Toxicol 7:2.
  • McDougall CM, Blaylock MG, Douglas JG, Brooker RJ, Helms PJ, Walsh GM. 2008. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am J Respir Cell Mol Biol 39(5):560–568.
  • Morawska L, He C, Johnson G, Jayaratne R, Salthammer T, Wang H, 2009. An investigation into the characteristics and formation mechanisms of particles originating from the operation of laser printers. Environ Sci Technol 43(4):1015–1022.
  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7(1):39.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311(5761):622–627.
  • Oberdorster G. 2001. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1):1–8.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839.
  • Park EJ, Yoon J, Choi K, Yi J, Park K. 2009. Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260(1–3):37–46.
  • Payne AN, Cheng JB. 1990. PMNs and airway inflammation/hyperreactivity. Agents Actions 29(3-4):181–183.
  • Pilger A, Rudiger HW. 2006. 8-Hydroxy-2′-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80(1):1–15.
  • Pitrez PM, Brennan S, Turner S, Sly PD. 2005. Nasal wash as an alternative to bronchoalveolar lavage in detecting early pulmonary inflammation in children with cystic fibrosis. Respirology 10(2):177–182.
  • Prakash UBS. 2005. Bronchoscopy. In: Mason RJ, Murray J, Broaddus VC, Nadel J, editors. Textbook of respiratory medicine. Philadelphia, PA: Saunders Elsevier.
  • Prat J, Xaubet A, Mullol J, Plaza V, Maso M, Lleonart R, 1993. Immunocytologic analysis of nasal cells obtained by nasal lavage: a comparative study with a standard method of cell identification. Allergy 48(8):587–591.
  • Quinn TJ, Taylor S, Wohlford-Lenane CL, Schwartz DA. 2000. IL-10 reduces grain dust-induced airway inflammation and airway hyperreactivity. J Appl Physiol 88(1):173–179.
  • Repka-Ramirez S, Naranch K, Park YJ, Clauw D, Baraniuk JN. 2002. Cytokines in nasal lavage fluids from acute sinusitis, allergic rhinitis, and chronic fatigue syndrome subjects. Allergy Asthma Proc 23(3):185–190.
  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, 2010. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73(5):445–461.
  • Rybicki BA, Amend KL, Maliarik MJ, Iannuzzi MC. 2004. Photocopier exposure and risk of sarcoidosis in African-American sibs. Sarcoidosis Vasc Diffuse Lung Dis 21(1):49–55.
  • Sangani RG, Ghio AJ. 2011. Lung injury after cigarette smoking is particle related. Int J Chron Obstruct Pulmon Dis 6:191–198.
  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, 2006. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185.
  • Shigenaga MK, Ames BN. 1991. Assays for 8-hydroxy-2'-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Radic Biol Med 10(3-4):211–216.
  • Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, 2007. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222(2):141–151.
  • Song S. 2010. Number Concentration of ambient ultrafine particles and oxidative DNA damage in schoolchildren in Korea. In: ISEE 22nd Annual Conference; 28 August-1 September 2010; Seoul, Korea.
  • Takizawa H, Tanaka M, Takami K, Ohtoshi T, Ito K, Satoh M, 2000. Increased expression of inflammatory mediators in small-airway epithelium from tobacco smokers. Am J Physiol Lung Cell Mol Physiol 278(5):L906–L913.
  • Theegarten D, Boukercha S, Philippou S, Anhenn O. 2010. Submesothelial deposition of carbon nanoparticles after toner exposition: case report. Diagn Pathol 5(1):77.
  • Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, 2007. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168(2):176–185.
  • Wei Y, Han IK, Shao M, Hu M, Zhang OJ, Tang X. 2009. PM2.5 constituents and oxidative DNA damage in humans. Environ Sci Technol 43(13):4757–4762.
  • Wensing M, Schripp T, Uhde E, Salthammer T. 2008. Ultra-fine particles release from hardcopy devices: sources, real-room measurements and efficiency of filter accessories. Sci Total Environ 407(1):418–427.
  • Wu LL, Chiou CC, Chang PY, Wu JT. 2004. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339(1–2):1–9.
  • Xia T, Li N, Nel AE. 2009. Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150.
  • Yang W, Peters JI, Williams RO 3rd. 2008. Inhaled nanoparticles–a current review. Int J Pharm 356(1-2):239–247.
  • Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, 2008. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247(2–3):102–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.