605
Views
124
CrossRef citations to date
0
Altmetric
Original Article

Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens

, , , , , , & show all
Pages 179-188 | Received 21 Jul 2012, Accepted 31 Dec 2012, Published online: 04 Feb 2013

References

  • Arnon D. 1948. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–15.
  • Asli S, Neumann PM. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584.
  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, et al. 2011. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827.
  • Baker AJM. 1981. Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654.
  • Barceló J, Poschenrieder C. 2002. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exper Botany 48:75–92.
  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, et al. 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14.
  • Chen GC, Chen XC, Yang YQ, Hay AG, Yu XH, Chen YX. 2011. Sorption and distribution of copper in unsaturated Pseudomonas putida CZ1 biofilms as determined by X-ray fluorescence microscopy. Appl Environ Microbiol 77:4719–4727.
  • Chen KL, Mylon SE, Elimelech M. 2007. Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir 23:5920–5928.
  • Christian P, Kammer F, Baalousha M, Hofmann T. 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17:326–343.
  • Cioffi N, Ditaranto N, Torsi L, Picca RA, Sabbatini L, Valentini A, et al. 2005. Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616.
  • Dietz KJ, Herth S. 2011. Plant nanotoxicology. Trends Plant Sci 16:582–589.
  • Hu X, Cook S, Wang P, Hwang H-m. 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072.
  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. 2010. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314.
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, et al. 2010. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302.
  • Lee C W, Mahendra S, Zodrow K, Li D, Tsai Y-C, Braam J, et al. 2010. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675.
  • Lee WM, An YJ, Yoon H, Kweon HS. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921.
  • Lee WM, Kwak JI, An YJ. 2012. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 86:491–499.
  • Limbach LK, Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, et al. 2010. No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44:8718–8723.
  • Lin DH, Xing BS. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585.
  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa J, et al. 2010a. Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320.
  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL. 2010b. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693.
  • Lou LQ, Shen ZG, Li XD. 2004. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exper Botany 51:111–120.
  • Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, et al. 2011. Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5:743–753.
  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, et al. 2010. Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279.
  • Mendham J, Denney RC, Barnes JD, Thomas MJK, Denney RC, Thomas MJK. 2000. Vogel's quantitative chemical analysis. 6th edition. New York: Prentice Hall.
  • Meulenkamp EA. 1998. Synthesis and growth of ZnO nanoparticles. J Phy Chem B 102:5566–5572.
  • Miralles P, Church TL, Harris AT. 2012. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239.
  • Paktunc D, Foster A, Heald S, Laflamme G. 2004. Speciation and characterization of arsenic in gold ores and cyanidation tailings using X-ray absorption spectroscopy. Geochim Cosmochim Acta 68:969–983.
  • Peng HY, Yang XE, Yang MJ, Tian SK. 2006. Responses of antioxidant enzyme system to copper toxicity and copper detoxification in the leaves of Elsholtzia splendens. J Plant Nutr 29:1619–1635.
  • Ressler T. 1998. WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. J Synchrotron Radiat 5:118–122.
  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498.
  • Ruffini Castiglione M, Cremonini R. 2009. Nanoparticles and higher plants. Caryologia 62:161–165.
  • Ruffini Castiglione M, Giorgetti L, Geri C, Cremonini R. 2011. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13:2443–2449.
  • Saison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, et al. 2010. Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquatic Toxicology 96:109–114.
  • Schützendübel A, Polle A. 2002. Plant responses to abiotic stresses: heavy metal‐induced oxidative stress and protection by mycorrhization. J Exper Botany 53:1351–1365.
  • Sharma SS, Dietz K-J. 2009. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50.
  • Shi JY, Abid AD, Kennedy IM, Hristova KR, Silk WK. 2011. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution. Environ Pollut 159:1277–1282.
  • Shi JY, Chen YX, Haung YY, He W. 2004. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35:557–564.
  • Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, et al. 2008. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174.
  • U.S. Environmental Protection Agency. (US EPA). 1996. Ecological effects test guidelines. (OPPTS 850.4200): Seed germination/ root elongation toxicity test. Public Draft. Washington, DC: Office of Prevention, Pesticides and Toxic Substances.
  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, et al. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441.
  • Zhang P, Ma YH, Zhang ZY, He X, Guo Z, Tai RZ, et al. 2011. Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46:1834–1841.
  • Zhang WX, Karn B. 2005. Nanoscale environmental science and technology: Challenges and opportunities. Environ Sci Technol 39:94a–95a.
  • Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitoring 10:713.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.