478
Views
34
CrossRef citations to date
0
Altmetric
Original Article

The effects of engineered nanoparticles on the cellular structure and growth of Saccharomyces cerevisiae

, , , &
Pages 363-373 | Received 02 Dec 2011, Accepted 18 Mar 2013, Published online: 22 Apr 2013

References

  • Asharani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2008. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290.
  • Bondarenko O, Ivask A, Käkinen A, Kahru A. 2012. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89.
  • Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X, et al. 2012. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology; Epub ahead of print.
  • Chen W, Hong L, Liu A-L, Liu J-Q, Lin X-H, Xia X-H. 2012a. Enhanced chemiluminescence of the luminol-hydrogen peroxide system by colloidal cupric oxide nanoparticles as peroxidase mimic. Talanta 99:643–648.
  • Chen Y, Chen H, Zheng X, Mu H. 2012b. The impacts of silver nanoparticles and silver ions on wastewater biological phosphorous removal and the mechanisms. J Hazard Mater 239–240:88–94.
  • Cicchetti R, Divizia M, Valentini F, Argentin G. 2011. Effects of single-wall carbon nanotubes in human cells of the oral cavity: geno-cytotoxic risk. Toxicol In Vitro 25:1811–1819.
  • Cohen D, Soroka Y, Ma'or Z, Oron M, Portugal-Cohen M, Brégégère FM, et al. 2013. Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture. Toxicol In Vitro 27:292–298.
  • Das D, Giasuddin A. 2012. Silver nanoparticles damage yeast cell wall. Int Res J Biotechnol 3:37–39.
  • Davoren M, Herzog E, Casey A, Cottineau B, Chambers G, Byrne HJ, et al. 2007. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21:438–448.
  • Despax B, Saulou C, Raynaud P, Datas L, Mercier-Bonin M. 2011. Transmission electron microscopy for elucidating the impact of silver-based treatments (ionic silver versus nanosilver-containing coating) on the model yeast Saccharomyces cerevisiae. Nanotechnology 22:175101.
  • Devirgiliis C, Murgia C, Danscher G, Perozzi G. 2004. Exchangeable zinc ions transiently accumulate in a vesicular compartment in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 323:58–64.
  • Ducharme NA, Bickel PE. 2008. Minireview: lipid droplets in lipogenesis and lipolysis. Endocrinology 149:942–949.
  • Eide DJ. 2006. Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Guo Y, Cheng C, Wang J, Wang Z, Jin X, Li K, et al. 2011. Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes. J Hazard Mater 192:786–793.
  • Huster D, Lutsenko S. 2007. Wilson disease: not just a copper disorder. Analysis of a Wilson disease model demonstrates the link between copper and lipid metabolism. Mol Biosyst 3:816–824.
  • Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–58.
  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, et al. 2012. Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314.
  • Jin C-Y, Zhu B-S, Wang X-F, Lu Q-H. 2008. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol 21:1871–1877.
  • Kaiser J-P, Wick P, Manser P, Spohn P, Bruinink A. 2008. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J Mate Sci Mater Med 19:1523–1527.
  • Kam NWS, Dai H. 2005. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127:6021–6026.
  • Kam NWS, O'Connell M, Wisdom JA, Dai H. 2005. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605.
  • Kao Y-Y, Chen Y-C, Cheng T-J, Chiung Y-M, Liu P-S. 2012. Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472.
  • Karlsson HL, Cronholm P, Gustafsson J, Moìˆller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.
  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122.
  • Kennedy DC, Lyn RK, Pezacki JP. 2009. Cellular lipid metabolism is influenced by the coordination environment of copper. J Am Chem Soc 131:2444–2445.
  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101.
  • Kisin ER, Murray AR, Keane MJ, Shi X-C, Schwegler-Berry D, Gorelik O, et al. 2007. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70:2071–2079.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881.
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, et al. 2010. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302.
  • Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, et al. 2007. Single-walled carbon nanotubes in the intact organism: near-IR imaging and biocompatibility studies in drosophila. Nano Lett 7:2650–2654.
  • Lipovsky A, Nitzan Y, Gedanken A, Lubart R. 2011. Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. Nanotechnology 22:105101.
  • Lu S, Duffin R, Poland C, Daly P, Murphy F, Drost E, et al. 2008. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117:241–247.
  • Meaume S, Weber I. 2012. Wound dressings for surgeons. Surgical wound healing and management. second edition.
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346.
  • Murphy DJ. 2001. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438.
  • Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, et al. 2009. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257:161–171.
  • Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Olive PL, Banáth JP, Durand RE. 1990. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay. Radiat Res 122:86–94.
  • Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, et al. 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340.
  • Peycheva E, Georgieva M, Miloshev G. 2009. Comparison between alkaline and neutral variants of yeast comet assay. Biotechnol Biotechnol Equipment 23:1090–1092.
  • Phillips CL, Yah CS, Iyuke SE, Rumbold K, Pillay V. 2012. The cellular response of Saccharomyces cerevisiae to multi-walled carbon nanotubes (MWCNTs). J Saudi Chem Soc; in press.
  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM. 2008. Antibacterial characterization of silver nanoparticles against E.coli ATCC-15224. J Mat Sci Tech 24(2):192–196.
  • Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, et al. 2002. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110:797–800.
  • Rajapakse K, Drobne D, Kastelec D, Marinsek-Logar R. 2012. Experimental evidence of false positive Comet test results due to TiO(2) particle - assay interactions. Nanotoxicology; Epub ahead of print.
  • R Development Core Team. 2011. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing..
  • Singh RP, Ramarao P. 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213:249–259.
  • Slomberg DL, Schoenfisch MH. 2012. Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254.
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. 2010. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174.
  • Sultana W, Ghosh S, Eraiah B. 2012. Zinc oxide modified au electrode as sensor for an efficient detection of hydrazine. Electroanalysis 24:1869–1877.
  • Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. 2009. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789.
  • Walczak AP, Fokkink R, Peters R, Tromp P, Herrera Rivera Z, Rietjens I, et al. 2012. Behavior of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 0:1–30.
  • Wang J, Sun P, Bao Y, Dou B, Song D, Li Y. 2012a. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro 26:32–41.
  • Wang Z, Li N, Zhao J, White JC, Qu P, Xing B. 2012b. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25:1512–1521.
  • Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM. 2007. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230:90–104.
  • Wörle-Knirsch JM, Pulskamp K, Krug HF. 2006. Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Yehia HN, Draper RK, Mikoryak C, Walker EK, Bajaj P, Musselman IH, et al. 2007. Single-walled carbon nanotube interactions with HeLa cells. J Nanobiotechnology 5:8.
  • Zhang M, Ellis EA, Cisneros-Zevallos L, Akbulut M. 2012a. Uptake and translocation of polymeric nanoparticulate drug delivery systems into ryegrass. RSC Adv 2:9679–9686.
  • Zhang Y, Deng J, Zhang Y, Guo F, Li C, Zou Z, et al. 2013. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med 91:117–128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.