521
Views
118
CrossRef citations to date
0
Altmetric
Original Article

Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L

, &
Pages 374-382 | Received 13 Sep 2012, Accepted 22 Mar 2013, Published online: 15 Apr 2013

References

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • ASTM. 2004. Standard guide for conducting static toxicity tests with Lemna gibba G3. West Conshohocken, PA, USA: ASTM International. pp E 1415–E 1491.
  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet JP, Wiesner MR. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641.
  • Baek Y-W, An Y-J. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608.
  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, et al. 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14.
  • Brain RA, Cedergreen N. 2009. Biomarkers in aquatic plants: selection and utility. Rev Environ Contam Toxicol 198:49–109.
  • Dastjerdi R, Montazer M. 2010. A review on the application of inorganic nanostructured materials in the modification of textiles: Focus on antimicrobial properties. Colloids Surf B Biointerfaces 79:5–18.
  • Delay M, Frimmel FH. 2012. Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592.
  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic Ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396.
  • Domingos RF, Simon DF, Hauser C, Wilkinson KJ. 2011. Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii - nanoparticles or the free ions? Environ Sci Technol 45:7664–7669.
  • Domingos RF, Tufenkji N, Wilkinson KJ. 2009. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286.
  • Ghosh S, Mashayekhi H, Bhowmik P, Xing B. 2010. Colloidal stability of Al2O3 nanoparticles as affected by coating of structurally different humic acids. Langmuir 26:873–879.
  • Gottschalk F, Ort C, Scholz RW, Nowack B. 2011. Engineered nanomaterials in rivers - Exposure scenarios for Switzerland at high spatial and temporal resolution. Environ Pollut 159:3439–3445.
  • Greenberg BM, Huang X-D, Dixon DG. 1992. Applications of the aquatic higher plant Lemna gibba for ecotoxicological assessment. J Aquat Ecosyst Health 1:147–155.
  • Hall JL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11.
  • Huh AJ, Kwon YJ. 2011. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145.
  • Jiang J, Oberdorster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851.
  • Kramer DM, Johnson G, Kiirats O, Edwards GE. 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218.
  • Kucera T, Horakova H, Sonska A. 2008. Toxic metal ions in photoautotrophic organisms. Photosynthetica 46:481–489.
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, et al. 2010. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in arabidopsis thaliana. Nano Lett 10:2296–2302.
  • Lifset RJ, Eckelman MJ, Harper EM, Hausfather Z, Urbina G. 2012. Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Sci Total Environ 417-418:138–147.
  • Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC. 2009. Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966.
  • Manusadzianas L, Caillet C, Fachetti L, Gylyte B, Grigutyte R, Jurkoniene S, et al. 2012. Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environ Toxicol Chem 31:108–114.
  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, et al. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.
  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV. 2011. Effects of copper(II) ions and copper oxide nanoparticles on elodea densa planch. Russ J Ecol 42:458–463.
  • Niyogi KK. 2000. Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460.
  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, et al. 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59.
  • OECD. 2006. Lemna sp. growth inhibition test. Paris, France; Guideline 221.
  • Perales-Vela HV, González-Moreno S, Montes-Horcasitas C, Cañizares-Villanueva RO. 2007. Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281.
  • Perreault F, Bogdan N, Morin M, Claverie J, Popovic R. 2012b. Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 6:109–120.
  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R. 2012a. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394.
  • Popovic R, Dewez D, Juneau P. 2003. Applications of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In: DeEll R, Toivonen P, editors. Practical applications of chlorophyll fluorescence in plant biology. Norwell, MA, USA: Kluwer Academic Publishers. pp 151–184.
  • Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, et al. 2009. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 94:56–61.
  • Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP. 2009. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590.
  • Rohacek K, Bartak M. 1999. Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363.
  • Sadison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, et al. 2010. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114.
  • Scown TM, van Aerle R, Tyler CR. 2010. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670.
  • Shi J, Abid AD, Kennedy IM, Hristova KR, Silk WK. 2011. Do duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution? Environ Pollut 159:1277–1282.
  • Strasser RJ, Srivastava A, Tsimilli-Michael M. 2004. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. The Netherlands: Kluwer Academic Publishers. pp 321–362.
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. 2010. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–74.
  • Wang Y, Aker WG, Hwang H-M, Yedjou CG, Yu H, Tchounwou PB. 2011a. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762.
  • Wang Z, Li J, Zhao J, Xing B. 2011b. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040.
  • Xia J, Tian Q. 2009. Early stage toxicity of excess copper to photosystem II of Chlorella pyrenoidosa- OJIP chlorophyll a fluorescence analysis. J Environ Sci 21:1569–1574.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Zhou D, Jin S, Li L, Wang Y, Weng N. 2011. Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. J Environ Sci 23:1852–1857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.