592
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials

, , , , &
Pages 422-432 | Received 08 Sep 2012, Accepted 09 Apr 2013, Published online: 15 May 2013

References

  • Ahamed M, Siddiqui MA, Akhtar I, Ahmad I, Pant AB, Alhadlaq HA. 2010. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Comm 396:578–583.
  • Baek YK, An YJ. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608.
  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH. 2011. Aggregation and sisolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength and adsorption of humic acids. Langmuir 27:6059–6068.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Poll 158:41–47.
  • Cho EC, Zhang Q, Xia Y. 2011. The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391.
  • Costa P, Sousa Lobo JM. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133.
  • Fahmy B, Cormier SA. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–1371.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ Sci Technol 41:8484–8490.
  • Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. 2008. The effect of particle design on cellular internalization pathways. Proc Natl Acd Sci 105:11613–11618.
  • Gunawan C, Teoh WY, Marquis CP, Amal R. 2011. Cytotoxic origin of copper(II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225.
  • Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010. 31:438–448.
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.
  • Karlsson HL, Gustafsson J, Cronholm P, Moller L. 2009. Size-dependent toxicity of metal oxide particles—A comparison between nano- and micrometer size. Toxicol Lett 188:112–118.
  • Kim TH, Kim M, Park HS, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100:1033–1043.
  • Kwang Ko C, Lee WG. 2010. Effects of pH variation in aqueous solutions on dissolution of copper oxide. Surf Interface Anal 42:1128–1130.
  • Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, et al. 2008. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol 232:292–301.
  • Li Y, Zhang W, Niu J, Chen Y. 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173.
  • Liao DL, Wu GS, Liao BQ. 2009. Zeta potential of shape-controlled TiO2 nanoparticles with surfactants. Colloids Surf A Physicochem Eng Asp 348:270–275.
  • Liu J, Hurt RH. 2010. Ion release kinetics and particle persistence in aqueous nano silver colloids. Environ Sci Technol 44:2169–2175.
  • Liu J, Sonshine DA, Shervani S, Hurt RH. 2010. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913.
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size abd surface properties determine the protein corona with possible implications for biological impacts. Proc Nat Acad Sci 105:14265–14270.
  • Marques MRC, Loebenberg R, Almukainzi M. 2011. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol 18:15–28.
  • Midlander K, Cronholm P, Karlsson HL, Elihn K, Moller L, et al. 2009. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399.
  • Mills A, Morris S. 1993. Photomineralization of 4-chlorophenol sensitized by titanium ioxide: a study of the initial kinetics of carbon dioxide photogeneration. J Photochem Photobiol A 71:71–83.
  • Misra SK, Dybowska AD, Berhanu D, Croteau MN, Luoma SN, Boccaccini AR, et al. 2012a. Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environ Sci Technol 46:1216–1222.
  • Misra SK, Dybowska AD, Berhanu D, Luoma SN, Valsami-Jones E. 2012b. The complexity of nanoparticles dissolution and its importance in nanotoxicological studies. Sci Total Env 438:225–232.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.
  • Neumann PZ, Sass-Kortsak A. 1967. The state of copper in human serum: evidence for an amino acid-bound fraction. J Clin Invest 46:646–658.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720.
  • Park EJ, Yi J, Kim Y, Choi K, Park K. 2010. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878.
  • Plascecia-Villa G, Starr CR, Armstrong LS, Ponce A, Jose-Yacaman M. 2012. Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integr Biol 4:1358–1366.
  • Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, et al. 2011. Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8:36.
  • Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, et al. 2010. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197:169–174.
  • Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. 2011. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27.
  • Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PL, Hammond PT, et al. 2011. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63:1228–1246.
  • Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, et al. 2009. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24.
  • Zhu J, Li D, Chen H, Yang X, Lu L, Wang X. 2004. Highly dispersed CuO nanoparticles prepared by a novel quick precipitation method. Mater Lett 58:3324–3327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.