845
Views
53
CrossRef citations to date
0
Altmetric
Original Article

Principal component and causal analysis of structural and acute in vitro toxicity data for nanoparticles

, , , , , & show all
Pages 465-476 | Received 30 Jun 2012, Accepted 29 Mar 2013, Published online: 15 Apr 2013

References

  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. 2010a. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10:2543–2548.
  • Arvizo RR, Mukherjee P, Prakash YS, Thompson MA, Miranda OR, Robertson JD, et al. 2010b. Surface charge determines functional interactions between nanoparticles and cells. Abstracts of Papers of the American Chemical Society 240.
  • Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, et al. 2007. Meeting report: hazard assessment for nanoparticles - Report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659.
  • Balshaw DM, Philbert M, Suk WA. 2005. Research strategies for safety evaluation of nanomaterials, part III: nanoscale technologies for assessing risk and improving public health. Toxicol Sci 88:298–306.
  • Barlow PG, Donaldson K, MacCallum J, Clouter A, Stone V. 2005. Serum exposed to nanoparticle carbon black displays increased potential to induce macrophage migration. Toxicol Lett 155:397–401.
  • Barrett EP, Joyner LG, Halenda PP. 1951. The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380.
  • Brunauer S, Emmett PH, Teller E. 1938. Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319.
  • Burello E, Worth A. 2011a. Computational nanotoxicology. Predicting toxicity of nanoparticles. Nat Nanotechnol 6:138–139.
  • Burello E, Worth AP. 2011b. QSAR modeling of nanomaterials. WIREs Nanomed Nanotechnol 3:298–306.
  • Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA, Singh M, et al. 2005. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47.
  • Cho W-S, Duffin R, Poland CA, Duschl A, Oostingh GJ, MacNee W, et al. 2012. Differential pro-inflammatory effects of metal oxide nanoparticles and their soluble ions in vitro and in vivo; zinc and copper nanoparticles, but not their ions, recruit eosinophils to the lungs. Nanotoxicology 6:22–35.
  • Cho WS, Duffin R, Poland CA, Howie SEM, MacNee W, Bradley M, et al. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect 118:1699–1706.
  • Crane M, Handy RD, Garrod J, Owen R. 2008. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437.
  • Cui D, Tian F, Ozkan CS, Wang M, Gao H. 2005. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7.
  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ. 2004. Nanotoxicology. Occup Environ Med 61:727–728.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856.
  • Fubini B, Ghiazza M, Fenoglio I. 2010. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363.
  • Geller MD, Ntziachristos L, Mamakos A, Samaras Z, Schmitz DA, Froines JR, et al. 2006. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos Environ 40:6988–7004.
  • Handy RD, Kammer FVD, Lead JR, Hassellöv M, Owen R, Crane M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314.
  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856.
  • Jones T, Moreno T, BeruBe K, Richards R. 2006. The physicochemical characterisation of microscopic airborne particles in South Wales: a review of the locations and methodologies. Sci Total Environ 360:43–59.
  • Kent RD, Vikesland PJ. 2012. Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 46:6977–6984.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.
  • Langmuir I. 1916. The constitution and fundamental properties of solids and liquids Part I Solids. J Am Chem Soc 38:2221–2295.
  • Lu SL, Duffin R, Poland C, Daly P, Murphy F, Drost E, et al. 2009. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environ Health Perspect 117:241–247.
  • Muller J, Huaux F, Lison D. 2006. Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 44:1048–1056.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253.
  • Murphy F, Duffin R, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, et al. 2011. Length dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178(6):2587–2600.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano- bio interface. Nat Mater 8:543–557.
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Group ArftIRFRSINTSW. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Group IRFRSINTSW. 2005b. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005c. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Sci Technol 113:823–839.
  • Poland C, Byrne F, Cho WS, Prina-Mello A, Murphy F, Davies GL, et al. Length–dependent inflammatory and fibrogenic effects of nickel oxide nanowires in the lungs and the peritoneal cavity.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM. 2006. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303.
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. 2007. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51.
  • Price H, Arthur R, Sexton K, Gregory C, Hoogendoorn B, Matthews I, et al. 2010. Airborne particles in Swansea, UK: their collection and characterization. J Toxicol Environ Health A 73:355–367.
  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178.
  • Rivera-Gil P, Aberasturi DJD, Wulf V, Pelaz B, Pino PD, Zhao Y, et al. 2012. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res DOI: 10.1021/ar300039j.
  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, et al. 2010. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 73:445–461.
  • Sauvain JJ, Deslarzes S, Riediker M. 2008. Nanoparticle reactivity toward dithiothreitol. Nanotoxicology 2:121–129.
  • Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ. 2003. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66:1909–1926.
  • Thomas K, Sayre P. 2005. Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321.
  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, et al. 2006. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50.
  • Valle S, Li WH, Qin SJ. 1999. Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods. Indust Eng Chem Res 38:4389–4401.
  • Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, et al. 2008. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.