576
Views
60
CrossRef citations to date
0
Altmetric
Original Article

Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells

, , , , , & show all
Pages 485-507 | Received 15 Oct 2012, Accepted 28 Apr 2013, Published online: 28 May 2013

References

  • Al-Jamal KT, Nerl H, Muller KH, Ali-Boucetta H, Li S, Haynes PD, et al. 2011. Cellular uptake mechanisms of functionalized multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3:2627–2635.
  • Anderson AJ, Wibroe PP, Moghimi SM. 2012. Perspectives on carbon nanotube-mediated adverse immune effects. Adv Drug Deliv Rev; Epub. in press.
  • Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SA, et al. 2010. Review of carbon nanotubes toxicity and exposure—appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 40. 759–790.
  • Azad N, Iyer AK, Wang L, Liu Y, Lu Y, Rojanasakul Y. 2012. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotox 7:157–168.
  • Azad N, Iyer AKV, Wang L, Lu Y, Medan D, Castranova V, et al. 2010. Nitric oxide-mediated bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells. Am J Respir Mol Biol 42. 578:585.
  • Azad N, Rojanasakul Y, Vallyathan V. 2008. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev 11:1–15.
  • Bai J, Hu S. 2012. Transcriptome network analysis reveals potential candidate genes for squamous lung cancer. Int J Mol Med 29:95–101.
  • Borm PJ, Schins RP, Albrecht C. 2004. Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14.
  • Broaddus VC, Everitt JI, Black B, Kane AB. 2011. Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B 14:153–178.
  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, et al. 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 8:437–445.
  • Creton S, Aardema MJ, Carmichael PL, Harvey JS, Martin FL, Newbold RF, et al. 2012. Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs. Mutagenesis 27:93–101.
  • Cullen M, Seaman S, Chaudhary A, Yang MY, Hilton MB, Logsdon D, et al. 2009. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res 69:6021–6026.
  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, et al. 2008. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role on long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5.
  • Donaldson K, Poland CA. 2012. Inhaled nanoparticles and lung cancer – what we can learn from conventional particle toxicology. Swiss Med Wkly 142:w13547.
  • Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856.
  • Ganter B, Giroux CN. 2008. Emerging applications of network and pathway analyses in drug discovery and development. Curr Opin Drug Discov Dev 11:86–94.
  • Guo NL, Wan YW, Denvir J, Porter DW, Pacurari M, Wolfarth MG, et al. 2012. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health A 75:1129–1153.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–674.
  • Heintz NH, Janssen-Heininger YM, Mossman BT. 2010. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42:133–139.
  • Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, et al. 2009. SWCNT suppresses inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 234:378–390.
  • Hevel JM, Olson-Buelow LC, Ganesan B, Stevens JR, Hardman JP, Aust AE, et al. 2008. Novel functional view of the crocidolite asbestos-treated A549 human lung epithelial transcriptome reveals an intricate network of pathways with opposing functions. BMC Genomics 9:376.
  • Hirano S, Fujitani Y, Furuyama A, Kanno S. 2010. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol Appl Pharm 249:8–15.
  • Huang X, Ji G, Wu Y, Wan B, Yu L. 2008. LAMA4, highly expressed in human hepatocellular carcinoma from Chinese patients, is a novel marker of tumor invasion and metastasis. J Cancer Res Clin Oncol 134:705–714.
  • Hussain MA, Kabir MA, Sood AK. 2009. On the cytotoxicity of carbon nanotubes. Curr Sci 96:664–673.
  • Iizasa T, Chang H, Suzuki M, Otsuji M, Yokoi S, Chiyo M, et al. 2004. Overexpression of collagen XVIII is associated with poor outcome and elevated levels of circulating serum endostatin in non-small cell lung cancer. Clin Cancer Res 10:5361–5366.
  • International Agency for Research on Cancer (IARC). 2010. Carbon Black. IARC Monographs 93:1–149.
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, et al. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol 6:2.
  • Jacobsen NR, Saber AT, White P, Moller P, Pojana G, Vogel U, et al. 2007. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen 48:451–461.
  • Kamp DW, Shacter E, Weitzman SA. 2011. Chronic inflammation and cancer: the role of the mitochondria. Oncology 25:400–413.
  • Kamp DW. 2009. Asbestos-induced lung diseases: an update. Transl Res 153:143–152.
  • Kim JS, Song KS, Lee JK, Choi YC, Bang IS, Kang CS, et al. 2012. Toxicogenomic comparison of multi-wall carbon nanotubes (MWCNTs) and asbestos. Arch Toxicol 86:553–562.
  • Kober AMM, Legewie S, Pforr C, Fricker N, Eils R, Krammer PH, et al. 2011. Caspase-8 activity has an essential role in CD95/Fas-mediated MAPK activation. Cell Death Dis 2:e212.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-walled carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134.
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vahala E, Catalan J, et al. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibers in human bronchial epithelial cells in vitro. Toxicol Lett 186:166–173.
  • Matsuzaki H, Maeda M, Lee S, Nishimura Y, Kumagi-Takei N, Hayashi H, et al. 2012. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. J Biomed Biotechnol 2012:492608.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Castranova V, et al. 2012. Pulmonary fibrotic response from inhaled multwalled carbon nanotube exposure in mice. Toxicologist 126:A1806–A1388.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, et al. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8:21.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, et al. 2010. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28.
  • Mercer RR, Scabilloni JF, Wang L, Kisin E, Murray AR, Schwegler-Berry D, et al. 2008. Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–L97.
  • Mishra A, Rojanasakul Y, Chen BT, Castranova V, Mercer RR, Wang L. 2012. Assessment of pulmonary fibrogenic potential of multiwalled carbon nanotubes in human lung cells. J Nanomater 2012:930931.
  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. 2009. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456.
  • Msiska Z, Pacurari M, Mishra A, Leonard SS, Castranova V, Vallyathan V. 2010. DNA double-strand breaks by asbestos, silica and titanium dioxide: possible biomarker of carcinogenic potential? Am J Respir Cell Mol Biol 43:210–219.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, et al. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231.
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol 178:2587–2600.
  • Murray AR, Kisin ER, Tkach AV, Yanamala N, Mercer RR, Young SH, et al. 2012. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 9:10.
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. 2011. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Nat Acad Sci 108:e1330–e1338.
  • Nymark P, Lindholm PM, Korpela MV, Lahti L, Ruosaari S, Kaski S, et al. 2007. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics 8:62.
  • Oberdorster G. 2002. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 14:29–56.
  • OECD. 2007. Detailed review on cell transformation assays for detection of chemical carcinogens. OECD Environment, Health and Safety, Series on Testing and Assessment, 31.
  • Pacurari M, Qian Y, Porter DW, Wolfarth M, Wan Y, Luo D, et al. 2011. Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol Appl Pharmacol 255:18–31.
  • Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, et al. 2008a. Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells. Informa Healthcare 2:155–170.
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, et al. 2008b. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116:1211–1217.
  • Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–6870.
  • Peters JM, Shah YM, Gonzalez FJ. 2012. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Cancer Rev 12:181–195.
  • Piao CQ, Li L, Zhao YL, Balajee AS, Masao Suzuki M, Hei TK. 2005. Immortalizaiton of human small airway epithelial cells by ectopic expression of telomerase. Carcinog 26:725–731.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428.
  • Ponti J, Broggi F, Mariani V, De Marzi L, Colognato R, Marmorato P, et al. 2012. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotox 7:221–233.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, et al. 2010. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicol 269:136–147.
  • Roco MC. 2005. Environmentally responsible development of nanotechnology. Environ Sci Technol 39:106A–112A.
  • Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, et al. 2006. TM4 microarray software suite. Methods Enzymol 411:134–193.
  • Sandhu D, Dehnen W, Roller M, Abel J, Unfried K. 2000. mRNA expression patterns in different stages of asbestos-induced carcinogenesis in rats. Carcinog 21:1023–1029.
  • Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, et al. 2012. Single-walled carbon nanotube-induced mitotic disruption. Mutat Res 745:28–37.
  • Sargent LM, Porter DW, Lowry DT, Battelli L, Siegrist K, Kashon ML, et al. 2013. Multiwalled carbon nanotube-induced lung tumors. Toxicologist 130:457.
  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, et al. 2009. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutag 50:708–717.
  • Sasaki K, Bohnenberger S, Hayashi K, Kunkelmann T, Muramatsu D, Poth A, et al. 2012. Photo catalogue for the classification of foci in the BALB/c 3T3 cell transformation assay. Mut Res 744:42–53.
  • Shanaz TAR, Dellaire G, Cuddihy A, Jalali F, Vaid M, Coackley C, et al. 2005. Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res 65:10–10821.
  • Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, et al. 2007. Single-walled carbon nanotubes induces oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–2472.
  • Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, et al. 2008. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 38:579–590.
  • Shvedova AA, Kisin ER, Mercer RR, Murray AR, Johnson VJ, Potapovich AI, et al. 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289:L698–L708.
  • Shvedova AA, Kisin ER, Porter D, Schulte P, Kagan VE, Fadeel B, et al. 2009. Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol Ther 121:192–204.
  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxico. Appl. Pharm 261:121–133.
  • Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD. 1992. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243.
  • Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, et al. 2012. Chronic occupational exposure to arsenic trioxide induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharm 261:204–216.
  • Szanto A, Nagy L. 2008. The many faces of PPARgamma: anti-inflammatory by any means? Immunobiol 213:79–82.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, et al. 2008. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-walled carbon nanotube. J Toxicol Sci 33:105–116.
  • Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A. 2004. Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol 287:L1127–L1133.
  • Teeguarden JG, Webb-Robertson BJ, Waters KM, Murray AR, Kisin ER, Varnum SM, et al. 2011. Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice. Toxicol Sci 120:123–135.
  • Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, et al. 2011. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 200:176–186.
  • Tian F, Cui D, Schwarz H, Estrada GG, Kobayashi H. 2006. Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20:1202–1212.
  • Tkach AV, Shurin GV, Shurin MR, Kisin ER, Murray AR, Young SH, et al. 2011. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano 5:5755–5762.
  • Varella-Garcia M. 2010. Chromosomal and genomic changes in lung cancer. Cell Adh Migr 4:100–106.
  • Vanparys P, Corvi R, Aardema M, Gribaldo L, Hayashi M, Hoffman S, Schechtman L. 2011. ECVAM prevalidation of three cell transformation assays. ALTEX 28:56–59.
  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, et al. 2010. Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31.
  • Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, et al. 2011b. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett 11:2796–2803.
  • Wang X, Xia T, Ntim SA, Ji Z, Lin S, Meng H, et al. 2011a. Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5:9772–9787.
  • Wright JR. 2004. Host defense functions of pulmonary surfactant. Biol Neonate 85:326–332.
  • Yin Q, Brody AR, Sullivan DE. 2007. Laser capture microdissection reveals dose-response of gene expression in situ consequent to asbestos exposure. Int J Exp Pathol 88:514–425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.