1,531
Views
239
CrossRef citations to date
0
Altmetric
Original Article

Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps

&
Pages 605-630 | Received 18 Jan 2013, Accepted 19 May 2013, Published online: 19 Jun 2013

References

  • Adams LK, Lyon DY, McIntosh A, Alvarez PJJ. 2006. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol 54:327–334.
  • Adler NE, Schmitt-Jansen M, Altenburger R. 2007. Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297–306.
  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. 2006. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306.
  • Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.
  • Armelao L, Barreca D, Bottaro G, Gasparotto A, Maccato C, Maragno C, et al. 2007. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18:375709.
  • Arora A, Sairam RK, Srivastava GC. 2002. Oxidative stress and antioxidative system in plants. Curr Sci India 82:1227–1238.
  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • Asada K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396.
  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, et al. 2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735.
  • Auffan M, Bottero JY, Chaneac C, Rose J. 2010. Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5:999–1007.
  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. 2009. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641.
  • Auffan M, Rose J, Wiesner MR, Bottero JY. 2009. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157:1127–1133.
  • Banerjee M, Mallick S, Paul A, Chattopadhyay A, Ghosh SS. 2010. Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite. Langmuir 26:5901–5908.
  • Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850–857.
  • Bartosz G. 1997. Oxidative stress in plants. Acta Physiol Plant 19:47–64.
  • Batley GE, Kirby JK, McLaughlin MJ. 2012. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862.
  • Battin TJ, Kammer FV, Weilhartner A, Ottofuelling S, Hofmann T. 2009. Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104.
  • Baun A, Hartmann NB, Grieger K, Kusk KO. 2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395.
  • Bhatt I, Tripathi BN. 2011. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317.
  • Bhattacharjee S. 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr Sci India 89:1113–1121.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47.
  • Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194.
  • Bondarenko O, Ivask A, Kakinen A, Kahru A. 2012. Sub-toxic effects of CuO nanoparticles on bacteria: Kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–89.
  • Bottero JY, Wiesner MR. 2010. Considerations in evaluating the physicochemical properties and transformations of inorganic nanoparticles in water. Nanomedicine 5:1009–1014.
  • Bouwmeester H, Lynch I, Marvin HJP, Dawson KA, Berges M, Braguer D, et al. 2011. Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11.
  • Braconi D, Bernardini G, Santucci A. 2011. Linking protein oxidation to environmental pollutants: Redox proteomic approaches. J Proteomics 74:2324–2337.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199.
  • Brunet L, Lyon DY, Hotze EM, Alvarez PJJ, Wiesner MR. 2009. Comparative photoactivity and antibacterial properties of C(60) fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360.
  • Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcia CP, et al. 2012. Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environ Sci Technol 46:11336–11344.
  • Burello E, Worth AP. 2011. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–235.
  • Burns JM, Cooper WJ, Ferry JL, King DW, DiMento BP, McNeill K, et al. 2012. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat Sci 74:683–734.
  • Chen LZ, Zhou LN, Liu YD, Deng SQ, Wu H, Wang GH. 2012. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotox Environ Safe 84:155–162.
  • Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959.
  • Cherchi C, Chernenko T, Diem M, Gu AZ. 2011. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30:861–869.
  • Cho M, Chung H, Choi W, Yoon J. 2004. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077.
  • Cho M, Chung HM, Choi WY, Yoon JY. 2005. Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275.
  • Choi O, Hu Z. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588.
  • Cui Y, Zhao YY, Tian Y, Zhang W, Lu XY, Jiang XY. 2012. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333.
  • Dasari TP, Hwang HM. 2010. The effect of humic acids on the cytotoxicity of silver nanoparticles to a natural aquatic bacterial assemblage. Sci Total Environ 408:5817–5823.
  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ. 2011. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756.
  • Domingos RF, Simon DF, Hauser C, Wilkinson KJ. 2011. Bioaccumulation and effects of CdTe/CdS quantum dots on Chlamydomonas reinhardtii - Nanoparticles or the free Ions? Environ Sci Technol 45:7664–7669.
  • Donaldson K, Beswick PH, Gilmour PS. 1996. Free radical activity associated with the surface of particles: A unifying factor in determining biological activity? Toxicol Lett 88:293–298.
  • Donaldson K, Tran CL. 2002. Inflammation caused by particles and fibers. Inhal Toxicol 14:5–27.
  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR. 2012. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloid Surf B 94:143–150.
  • Ercal N, Gurer-Orhan H, Aykin-Burns N. 2001. Toxic metals and oxidative stress part I: Mechanisms involved in metal induced oxidative damage. Curr Top Med Chem 529:539.
  • Eruslanov E, Kusmartsev S. 2010. Identification of ROS using oxidized DCFDA and flow cytometry. Methods Mol Biol 594:57–72.
  • Fischer B. 2004. Photooxidative stress responses in the green alga Chlamydomonas reinhardtii. Zürich: Doctor of Natural Sciences.
  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al. 2002. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.
  • Fujiwara K, Suematsu H, Kiyomiya E, Aoki M, Sato M, Moritoki N. 2008. Size-dependent toxicity of silica nano-particles to Chlorella kessleri. J Environ Sci Heal A 43:1167–1173.
  • Future Markets, Inc. 2011. Nanomaterials Production 2002-2016: Production volumes, revenues and end user market demand. The Market Publishers, Ltd. http://www.businesswire.com/news/home/ 20110915006042/en/Report-Nanomaterials-Production-2002-%E2%80%93-2016-MarketPublishers.com
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930.
  • Gogniat G, Dukan S. 2007. TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73:7740–7743.
  • Gomes A, Fernandes E, Lima JLFC. 2005. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled Environmental Concentrations of Engineered Nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for Different Regions. Environ Sci Technol 43:9216–9222.
  • Gregory J. 2006. Particles in water: properties and processes. Boca Raton: FL 33487-2742, CRC Press, Taylor & Franci Group.
  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS. 2008. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978.
  • Gunawan C, Teoh WY, Marquis CP, Amal R. 2011. Cytotoxic origin of copper(II) oxide nanoparticles: Comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225.
  • Hall S, Bradley T, Moore JT, Kuykindall T, Minella L. 2009. Acute and chronic toxicity of nano-scale TiO2 particles to freshwater fish, cladocerans, and green algae, and effects of organic and inorganic substrate on TiO2 toxicity. Nanotoxicology 3:91–97.
  • Halliwell B, Gutteridge JMC. Editors. 2007. Free radicals in biology and medicine. Oxford University Press Inc.
  • Handy RD, Owen R, Valsami-Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325.
  • Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314.
  • Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. 2008. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 17:438–447.
  • Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A. 2010. Algal testing of titanium dioxide nanoparticles–testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.
  • Hessler CM, Wu MY, Xue Z, Choi H, Seo Y. 2012. The influence of capsular extracellular polymeric substances on the interaction between TiO2 nanoparticles and planktonic bacteria. Water Res 46:4687–4696.
  • Hossain ST, Mukherjee SK. 2012. CdO Nanoparticle toxicity on growth, morphology, and cell division in Escherichia coli. Langmuir 28:16614–16622.
  • Hu XK, Cook S, Wang P, Hwang HM. 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072.
  • Huang L, Li DQ, Lin YJ, Evans DG, Duan X. 2005a. Influence of nano-MgO particle size on bactericidal action against Bacillus subtilis var. niger. Chinese Sci Bull 50. 514–519.
  • Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X. 2005b. Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993.
  • Ibanez JA, Litter MI, Pizarro RA. 2003. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (-) bacteria. J Photoch Photobiol A 157:81–85.
  • ISO. 2008. Nanotechnologies – Terminology and definitions for nano-objects – Nanoparticles, nanofibre and nanoplate. In: Iso, International Standards Organization (ed.) ISO/TS 27687. Geneva, Switzerland: International Standards Organization (ISO).
  • Ivask A, Bondarenko O, Jepihhina N, Kahru A. 2010. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Anal Bioanal Chem 398:701–716.
  • Jassby D, Farner Budarz J, Wiesner M. 2012. Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environ Sci Technol 46:6934–6941.
  • Ji J, Long Z, Lin D. 2011. Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530.
  • Joshi N, Ngwenya BT, French CE. 2012. Enhanced resistance to nanoparticle toxicity is conferred by overproduction of extracellular polymeric substances. J Hazard Mater 241–242:363–370.
  • Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K. 2008. Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A minireview. Sensors 8:5153–5170.
  • Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119.
  • Kelly FJ, Fussell JC. 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526.
  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95–101.
  • Kim KT, Klaine SJ, Cho J, Kim SH, Kim SD. 2010. Oxidative stress responses of Daphnia magna exposed to TiO2 nanoparticles according to size fraction. Sci Total Environ 408:2268–2272.
  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851.
  • Kohen R, Nyska A. 2002. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650.
  • Kreyling WG, Semmler-Behnke M, Chaudhry Q. 2010. A complementary definition of nanomaterial. Nano Today 5:165–168.
  • Krug HF, Wick P. 2011. Nanotoxicology: An interdisciplinary challenge. Angew Chem Int Edit 50:1260–1278.
  • Kubo M, Onodera R, Shibasaki-Kitakawa N, Tsumoto K, Yonemoto T. 2005. Kinetics of ultrasonic disinfection of Escherichia coli in the presence of titanium dioxide particles. Biotechnol Progr 21:897–901.
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881.
  • Kyle DJ, Osmond CB, Arntzen CJ. 1987. Photoinhibition. Elsevier Science Publishers B.V. (Biomediacal Division).
  • Ledford HK, Niyogi KK. 2005. Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1045.
  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL. 2008. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933.
  • Li KG, Chen Y, Zhang W, Pu ZC, Jiang L, Chen YS. 2012. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium. Chem Res Toxicol 25:1675–1681.
  • Li M, Czymmek KJ, Huang CP. 2011. Responses of Ceriodaphnia dubia to TiO2 and Al2O3 nanoparticles: a dynamic nano-toxicity assessment of energy budget distribution. J Hazard Mater 187:502–508.
  • Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. 2003. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Persp 111:455–460.
  • Li Y, Zhang W, Niu J, Chen Y. 2012. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173.
  • Liden G. 2011. The European Commission Tries to Define Nanomaterials. Ann Occup Hyg 55:1–5.
  • Lin D, Ji J, Long Z, Yang K, Wu F. 2012. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46:4477–4487.
  • Liu Y, Li J, Qiu XF, Burda C. 2007. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS. J Photoch Photobio A 190:94–100.
  • Livingstone DR. 2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666.
  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534.
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899.
  • Lu ZS, Li CM, Bao HF, Qiao Y, Toh YH, Yang X. 2008. Mechanism of antimicrobial activity of CdTe quantum dots. Langmuir 24:5445–5452.
  • Luna-Velasco A, Field JA, Cobo-Curiel A, Sierra-Alvarez R. 2011. Inorganic nanoparticles enhance the production of reactive oxygen species (ROS) during the autoxidation of L-3,4-dihydroxyphenylalanine (L-dopa. Chemosphere 85:19–25.
  • Ma S, Lin D. 2013. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci 14:145–160.
  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. 2005. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715.
  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA. 1999. Bactericidal activity of photocatalytic TiO2 reaction: Toward an understanding of its killing mechanism. Appl Environ Microbiol 65:4094–4098.
  • Marchini T, Magnani N, D'Annunzio V, Tasat D, Gelpi RJ, Alvarez S, et al. 2013. Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter. Biochim Biophys Acta 1830:2545–2552.
  • Miao AJ, Schwehr KA, Xu C, Zhang SJ, Luo Z, Quigg A, et al. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041.
  • Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E. 2012. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976.
  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.
  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. 2008. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.
  • Neal AL. 2008. What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557.
  • Nestler H, Groh K, Schonenberger R, Eggen R, Suter M. 2012. Linking proteome responses with physiological and biochemical effects in herbicide-exposed Chlamydomonas reinhardtii. J Proteomics 75:5370–5385.
  • Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839.
  • Oberdorster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1:2–25.
  • OECD. 2010. List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: Revision. Environment, Health and Safety Publications. Series on the Safety of Manufactured Nanomaterials. Paris: Organisation for Economic Co-operation and Development (OECD).
  • Oukarroum A, Bras S, Perreault F, Popovic R. 2012. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85.
  • Ovečka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl I. 2005. Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720.
  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R. 2012. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394.
  • Piccapietra F, Allué CG, Sigg L, Behra R. 2012. Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7397.
  • Poljšak B, Jamnik P, Raspor P, Pesti M. 2011. Oxidation-Antioxidation-Reduction Processes in the Cell: Impacts of Environmental Pollution. In: Nriagu JO, Editor. Encyclopedia of Environmental Health. Burlington: Elsevier.
  • Pompa PP, Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, et al. 2011. Physical assessment of toxicology at nanoscale: nano dose-metrics and toxicity factor. Nanoscale 3:2889–2897.
  • Prado R, Garcia R, Rioboo C, Herrero C, Abalde J, Cid A. 2009. Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat. Environ Int 35:240–247.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. 2011. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol 7:184–192.
  • Puzyn T, Rasulev B, Gajewicz A, Hu XK, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–178.
  • Raghupathi KR, Koodali RT, Manna AC. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028.
  • Rajapakse K, Drobne D, Valant J, Vodovnik M, Levart A, Marinsek-Logar R. 2012. Acclimation of Tetrahymena thermophila to bulk and nano-TiO2 particles by changes in membrane fatty acids saturation. J Hazard Mater 221–222:199–205.
  • Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, et al. 2002. Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach. Mar Environ Res 54:419–423.
  • Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G. 2008. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19.
  • Rogers NJ, Franklin NM, Apte SC, Batley GE, Angel BM, Lead JR, et al. 2010. Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater. Environ Chem 7:50–60.
  • Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, et al. 2010. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114.
  • Savic R, Luo LB, Eisenberg A, Maysinger D. 2003. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300:615–618.
  • Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G. 2010. Risk assessment of engineered nanomaterials and nanotechnologies—A review. Toxicology 269:92–104.
  • Scandalios JG. 2002. The rise of ROS. Trends Biochem Sci 27:483–486.
  • SCENIHR. 2007. The existing and proposed definitions relating to products of nanotechnologies. Scientific Committee on Emerging and Newly-Identified Health Risks.
  • Schwarzenbach RP, Egli T, Hofstetter TB, Von Gunten U, Wehrli B. 2010. Global water pollution and human health. Annu Rev Environ Resour 35:109–136.
  • Sevcu A, El-Temsah YS, Joner EJ, Cernik M. 2011. Oxidative stress induced in microorganisms by zero-valent iron nanoparticles. Microbes Environ 26:271–281.
  • Shi M, Kwon HS, Peng Z, Elder A, Yang H. 2012. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano 6:2157–2164.
  • Simon-Deckers A, Loo S, Mayne-L'Hermite M, Herlin-Boime N, Menguy N, Reynaud C, et al. 2009. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429.
  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, et al. 2009. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914.
  • Slaveykova VI, Startchev K, Roberts J. 2009. Amine- and carboxyl- quantum dots affect membrane integrity of bacterium Cupriavidus metallidurans CH34. Environ Sci Technol 43:5117–5122.
  • Stevanović MM, Škapin SD, Bračko I, Milenković M, Petković J, Filipič M, et al. 2012. Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer (Guildf) 53:2818–2828.
  • Stone V, Donaldson K. 2006. Nanotoxicology - Signs of stress. Nat Nanotechnol 1:23–24.
  • Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, et al. 2009. The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979–5987.
  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. 1998. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728.
  • Suresh AK, Pelletier DA, Doktycz MJ. 2013. Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474.
  • Szivak I, Behra R, Sigg L. 2009. Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae. J Phycol 45:427–435.
  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, et al. 2006. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156.
  • Tsang EWT, Bowler C, Herouart D, Vancamp W, Villarroel R, Genetello C, et al. 1991. Differential regulation of superoxide dismutases in plants exposed to environmental-stress. Plant Cell 3:783–792.
  • Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF. 2007. Cellular responses to nanoparticles: Target structures and mechanisms. Nanotoxicology 1:52–71.
  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox Environ Safe 64:178–189.
  • Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Lucas S, Janssen CR. 2008. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ Toxicol Chem 27:1948–1957.
  • Van Hoecke K, Quik JTK, Mankiewicz-Boczek J, De Schamphelaere KAC, Elsaesser A, Van der Meeren P, et al. 2009. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests. Environ Sci Technol 43:4537–4546.
  • Vileno B, Sienkiewicz A, Lekka M, Kulik AJ, Forró L. 2004. In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C60. Carbon 42:1195–1198.
  • Vranova E, Inze D, Van Breusegem F. 2002. Signal transduction during oxidative stress. J Exp Bot 53:1227–1236.
  • Wang JX, Zhang XZ, Chen YS, Sommerfeld M, Hu Q. 2008. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73:1121–1128.
  • Wang ZY, Li J, Zhao J, Xing BS. 2011. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040.
  • Wessels JG. 1993. Tansley Review No. 45 Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123:397–413.
  • Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P. 2006. Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345.
  • Wigginton NS, Haus KL, Hochella MF. 2007. Aquatic environmental nanoparticles. J Environ Monitor 9:1306–1316.
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–179.
  • Worms IM, Boltzman J, Garcia M, Slaveykova VI. 2012. Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Xu HY, Qu F, Xu H, Lai WH, Wang YA, Aguilar ZP, et al. 2012. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 25:45–53.
  • Zemke-White WL, Clements KD, Harris PJ. 2000. Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Biol Ecol 245:57–68.
  • Zeyons O, Thill A, Chauvat F, Menguy N, Cassier-Chauvat C, Orear C, et al. 2009. Direct and indirect CeO2 nanoparticles toxicity for Escherichia coli and Synechocystis. Nanotoxicology 3:284–295.
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368.
  • Ziegelhoffer EC, Donohue TJ. 2009. Bacterial responses to photo-oxidative stress. Nat Rev Microbiol 7:856–863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.