698
Views
75
CrossRef citations to date
0
Altmetric
Original Article

Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro

, , , , , , & show all
Pages 663-675 | Received 04 Feb 2013, Accepted 20 Jun 2013, Published online: 31 Jul 2013

References

  • Albanese A, Chan WC. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–5489.
  • Albanese A, Tang PS, Chan WC. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16.
  • Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, et al. 2009. Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 6:1.
  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, et al. 2008. Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14.
  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, et al. 2006. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381.
  • Cohen J, Deloid G, Pyrgiotakis G, Demokritou P. 2012. Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7:417–431.
  • Derjaguin B, Landau L. 1993. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59.
  • Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Osterle W, et al. 2011. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bioanal Chem 400:1367–1373.
  • Ferguson RM, Minard KR, Khandhar AP, Krishnan KM. 2011. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. Med Phys 38:1619–1626.
  • Gosens I, Post JA, De LA Fonteyne LJ, Jansen EH, Geus JW, Cassee FR, et al. 2010. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 7:37.
  • Gualtieri M, Skuland T, Iversen TG, Lag M, Schwarze P, Bilanicova D, et al. 2011. Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells. Nanotoxicology 6:700–712.
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, et al. 2010. ISDD: A computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7:36.
  • Hinderliter PM, Price PS, Bartels MJ, Timchalk C, Poet TS. 2011. Development of a source-to-outcome model for dietary exposures to insecticide residues: an example using chlorpyrifos. Regul Toxicol Pharmacol 61:82–92.
  • Huang HC, Barua S, Sharma G, Dey SK, Rege K. 2011. Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357.
  • Huber DL. 2005. Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501.
  • Karlsson HL, Gustafsson J, Cronholm P, Moller L. 2009. Size-dependent toxicity of metal oxide particles–a comparison between nano- and micrometer size. Toxicol Lett 188:112–118.
  • Kato T, Yashiro T, Murata Y, Herbert DC, Oshikawa K, Bando M, et al. 2003. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell Tissue Res 311:47–51.
  • Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, et al. 2010. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem 20:512–518.
  • Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. 2010. Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511–9518.
  • Li JJ, Muralikrishnan S, Ng CT, Yung LY, Bay BH. 2010. Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235:1025–1033.
  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. 2005. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376.
  • Lu AH, Salabas EL, Schuth F. 2007. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244.
  • Mahl D, Greulich C, Meyer-Zaika W, Koller M, Epple M. 2010. Gold nanoparticles: dispersability in biological media and cell-biological effect. J Mater Chem 20:6176–6181.
  • Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A. 2012. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338.
  • Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. 2011. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276.
  • Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. 2009. An in vitro study of bare and poly(ethylene glycol)-co-fumarate-coated superparamagnetic iron oxide nanoparticles: a new toxicity identification procedure. Nanotechnology 20:225104.
  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, et al. 2010. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–7491.
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al. 2006. Safe handling of nanotechnology. Nature 444:267–269.
  • Minard KR, Littke MH, Wang W, Xiong Y, Teeguarden JG, Thrall BD. 2012. Magnetic particle detection (MPD) for in-vitro dosimetry. Biosens Bioelectron 43:88–93.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253.
  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.
  • Okuda-Shimazaki J, Takaku S, Kanehira K, Sonezaki S, Taniguchi A. 2010. Effects of titanium dioxide nanoparticle aggregate size on gene expression. Int J Mol Sci 11:2383–2392.
  • Ovrevik J, Refsnes M, Namork E, Becher R, Sandnes D, Schwarze PE, et al. 2006. Mechanisms of silica-induced IL-8 release from A549 cells: initial kinase-activation does not require EGFR activation or particle uptake. Toxicology 227:105–116.
  • Park EJ, Choi J, Park YK, Park K. 2008. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245:90–100.
  • Rezwan K, Meier LP, Rezwan M, Voros J, Textor M, Gauckler LJ. 2004. Bovine serum albumin adsorption onto colloidal Al2O3 particles: a new model based on zeta potential and UV-vis measurements. Langmuir 20:10055–10061.
  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V. 2007. Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–119.
  • Schwertmann U. 1991. Solubility and dissolution of iron oxides. Plant Soil 130:1–25.
  • Singh N, Jenkins GJ, Asadi R, Doak SH. 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:10.
  • Sterling MC JR, Bonner JS, Ernest AN, Page CA, Autenrieth RL. 2005. Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems. Water Res 39:1818–1830.
  • Stringer B, Imrich A, Kobzik L. 1996. Lung epithelial cell (A549) interaction with unopsonized environmental particulates: quantitation of particle-specific binding and IL-8 production. Exp Lung Res 22:495–508.
  • Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F, Jung T, et al. 2004. Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic Biol Med 36:976–984.
  • Teeguarden J, Gupta A, Escobar P, Jackson M. 2008. Toxicology steps up to nanotechnology safety. RD Magazine 50:28–29.
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. 2007. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312.
  • Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. 2007. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 4:2.
  • Voinov MA, Sosa Pagan JO, Morrison E, Smirnova TI, Smirnov AI. 2011. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41.
  • Warheit DB. 2001. Inhaled amorphous silica particulates: what do we know about their toxicological profiles? J Environ Pathol Toxicol Oncol 20(Suppl 1):133–141.
  • Weaver TE, Whitsett JA. 1991. Function and regulation of expression of pulmonary surfactant-associated proteins. Biochem J 273(Pt 2):249–264.
  • Wells MA, Abid A, Kennedy IM, Barakat AI. 2011. Serum proteins prevent aggregation of Fe2O3 and ZnO nanoparticles. Nanotoxicology 6:837–846.
  • Wohlleben W. 2012. Validity range of centrifuges for the regulation of nanomaterials: from classification to as-tested coronas. J Nanopart Res 14:1300.
  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al. 2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.
  • Ying E, Hwang HM. 2010. In vitro evaluation of the cytotoxicity of iron oxide nanoparticles with different coatings and different sizes in A3 human T lymphocytes. Sci Total Environ 408:4475–4481.
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–4368.
  • Zook JM, Maccuspie RI, Locascio LE, Halter MD, Elliott JT. 2011. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5:517–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.