1,028
Views
19
CrossRef citations to date
0
Altmetric
Original Article

The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution

, , , , , , & show all
Pages 709-717 | Received 27 Dec 2012, Accepted 23 Jun 2014, Published online: 29 Jul 2013

References

  • Adams LK, Lyon DY, McIntosh A, Alvarez PJJ. 2006. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Sci Technol 54:327–334.
  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • Baek Y-W, An Y-J. 2011. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608.
  • Bagwe RP, Hilliard LR, Tan W. 2006. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362.
  • Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, et al. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654.
  • Biesinger KE, Christensen GM. 1972. Effects of various metals on survival, growth, reproduction, and metabolism of Daphnia magna. J Fish Res Board Can 29:1691–1700.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Poll 158:41–47.
  • Blust R, van der Linden A, Verheyen E, Decleir W. 1988. Evaluation of microwave heating digestion and graphite furnace atomic absorption spectrometry with continuum source background correction for the determination of iron, copper and cadmium in brine shrimp. J Anal At Spectrom 3:387–393.
  • Bringmann G, Kühn R. 1977. Befunde der Schadwirkung wassergefährdender Stoffe gegen Daphnia magna. Z. Wasser Abwasser Forsch 10:161–166.
  • Calzolai L, Gilliland D, Garcìa CP, Rossi F. 2011. Separation and characterization of gold nanoparticle mixtures by flow-field-flow fractionation. J Chromatogr 1218:4234–4239.
  • Companys E, Cecília J, Codina G, Puy J, Galceran J. 2005. Determination of Zn2+ concentration with AGNES using different strategies to reduce the deposition time. J Electroanal Chem 576:21–32.
  • Costa P, Sousa Lobo JM. 2001. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133.
  • David CA, Galceran J, Rey-Castro C, Puy J, Companys E, Salvador J, et al. 2012. Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. J Phys Chem C 116:11758–11767.
  • Domingos RF, Tufenkji N, Wilkinson KJ. 2009. Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286.
  • Dunphy Guzman KA, Finnegan MP, Banfield JF. 2006. Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.
  • Galceran J, Companys E, Puy J, Cecilia J, Garces JL. 2004. AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem 566:95–109.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222.
  • Gustafsson JP. 2010; Visual MINTEQ, version 3.0; Department of Land and Water Resources Engineering, The Royal Institute of Technology: Sweden. www.lwr.kth.se/English/Oursoftware/vminteq/index.htm.
  • Hao L, Chen L. 2012. Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110.
  • Heijerick DG, Janssen CR, Coen WMD. 2003. The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model. Arch Environ Contam Toxicol 44:0210–0217.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier H-C, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.
  • Hondow N, Harrington J, Brydson R, Doak SH, Singh N, Manshian B, et al. 2011. STEM mode in the SEM: a practical tool for nanotoxicology. Nanotoxicology 5:215–227.
  • Hooper HL, Jurkschat K, Morgan AJ, Bailey J, Lawlor AJ, Spurgeon DJ, et al. 2011. Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117.
  • Kahru A, Dubourguier H-C. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119.
  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23:1116–1122.
  • Kato H, Fujita K, Horie M, Suzuki M, Nakamura A, Endoh S, et al. 2010. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment. Toxicol in Vitro 24:1009–1018.
  • Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, et al. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967.
  • Kool PL, Ortiz MD, van Gestel CAM. 2011. Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Poll 159:2713–2719.
  • Laurent G, Ha-Duong NT, Méallet-Renault R, Pansu RB. 2004. Chapter 6 Effect of size and light power on the fluorescence yield of rubrene nanocrystals. In: Hiroshi M, Satoshi K, editors. Handai nanophotonics. Elsevier.
  • Li M, Zhu L, Lin D. 2011. Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983.
  • Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL. 2009. Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28:1324–1330.
  • Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269:182–189.
  • Muyssen BT, Janssen CR. 2002. Accumulation and regulation of zinc in Daphnia magna: links with homeostasis and toxicity. Arch Environ Contam Toxicol 43:492–496.
  • Muyssen BTA, Janssen CR. 2005. Importance of acclimation to environmentally relevant zinc concentrations on the sensitivity of Daphnia magna toward zinc. Environ Toxicol Chem 24:895–901.
  • Muyssen BTA, Janssen CR. 2007. Age and exposure duration as a factor influencing Cu and Zn toxicity toward Daphnia magna. Ecotoxicol Environ Saf 68:436–442.
  • Nair S, Sasidharan A, Divya Rani V, Menon D, Nair S, Manzoor K, et al. 2009. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:235–241.
  • OECD. 2004. OECD guideline for testing of chemicals. Daphnia sp., Acute Immobilisation Test.
  • OECD. 2008. OECD guideline for testing of chemicals. Daphnia magna Reproduction Test.
  • Peng X, Palma S, Fisher NS, Wong SS. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102:186–196.
  • Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, et al. 2011. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768.
  • Seo JH, Jeon WI, Dembereldorj U, Lee SY, Joo S-W. 2011. Cytotoxicity of serum protein-adsorbed visible-light photocatalytic Ag/AgBr/TiO2 nanoparticles. J Hazard Mater 198:347–355.
  • Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE. 2005. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169.
  • Tso CP, Zhung CM, Shih YH, Tseng YM, Wu SC, Doong RA. 2010. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133.
  • Wang H, Wick RL, Xing B. 2009. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Poll 157:1171–1177.
  • Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, et al. 2009. Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356–1365.
  • Zhang Y, Chen Y, Westerhoff P, Crittenden J. 2009. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257.
  • Zhao H-Z, Lu G-H, Xia J, Jin S-G. 2012. Toxicity of nanoscale CuO and ZnO to Daphnia magna. Chem Res Chinese Universities 28:209–213.
  • Zhou DX, Keller AA. 2010. Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44:2948–2956.
  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y. 2009a. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:195103.
  • Zhu X, Zhu L, Chen Y, Tian S. 2009b. Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J Nanopart Res 11:67–75.
  • Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:278–284.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.