467
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis

, , , , , , & show all
Pages 728-744 | Received 11 Mar 2014, Accepted 04 Jul 2014, Published online: 06 Aug 2013

References

  • Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G, Ashquin M, et al. 2010. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology 276:95–102.
  • Albanese A, Tang PS, Chan WCW. 2012. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu Rev Biomed Eng 14:1–16.
  • American Society for Testing and Materials (ASTM), 1998. Standard guide for conducting the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) E-1439-E1498.
  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, et al. 2009. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852.
  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.
  • Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. 2010. Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano Lett 10:2543–2548.
  • Bacchetta R, Santo N, Fascio U, Moschini E, Freddi S, Chirico G, et al. 2012a. Nano-sized CuO, TiO2 and ZnO affect Xenopus laevis development. Nanotoxicology 6:381–398.
  • Bacchetta R, Tremolada P, Di Benedetto C, Santo N, Fascio U, Chirico G, et al. 2012b. Does carbon nanopowder threaten amphibian development? Carbon 50:4607–4618.
  • Bai W, Zhang ZY, Tian WJ, He X, Ma YH, Zhao YL, et al. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654.
  • Bantle JA, Fort DJ, Rayburn JR, DeYoung DJ, Bush SJ. 1990. Further validation of FETAX: evaluation of the developmental toxicity of five known mammalian teratogens and non-teratogens. Drug Chem Toxicol 13:267–282.
  • Bernardini G, Vismara C, Boracchi P, Camatini M. 1994. Lethality, Teratogenicity and growth-inhibition of heptanol in Xenopus assayed by a modified frog embryo teratogenesis assay-Xenopus (Fetax) procedure. Sci Total Environ 151:1–8.
  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. 2010. Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47.
  • Bourdiol F, Mouchet F, Perrault A, Fourquaux I, Datas L, Gancet C, et al. 2013. Biocompatible polymer-assisted dispersion of multi walled carbon nanotubes in water, application to the investigation of their ecotoxicity using Xenopus laevis amphibian larvae. Carbon 54:175–191.
  • Chapple SJ, Siow RC, Mann GE. 2012. Crosstalk between Nrf2 and the proteasome: therapeutic potential of Nrf2 inducers in vascular disease and aging. Int J Biochem Cell Biol 44:1315–1320.
  • Colliex C. 1986. Electron energy-loss spectroscopy: analysis and imaging of biological specimens. Ann NY Acad Sci 483:311–326.
  • Dumont J, Schultz TW, Buchanan M, Kao G. 1983. Frog Embryo Teratogenesis Assay-Xenopus (FETAX) – a short-term assay applicable to complex environmental mixtures. In: Waters MD, Sandhu SS, Lewtas J, Claxton L, Chernoff N, Nesnow S, editors. Short-Term Bioassays in the Analysis of Complex Environmental Mixtures Plenum Press, New York; 967–976.
  • Elder A, Vidyasagar S, DeLouise L. 2009. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wires Nanomed Nanobi 1:434–450.
  • Farquhar MG, Palade GE. 1963. Junctional complexes in various epithelia. J Cell Biol 17:375–412.
  • Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.
  • Frohlich E, Roblegg E. 2012. Models for oral uptake of nanoparticles in consumer products. Toxicology 291:10–17.
  • Fukai T, Ushio-Fukai M. 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Sign 15:1583–1606.
  • Gottschalk F, Sonderer T, Scholz RW, Nowack B. 2009. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222.
  • Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. 2008. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618.
  • Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. 2007. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Bioph Res Co 353:26–32.
  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. 2008. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 9:435–443.
  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316.
  • Huang CC, Aronstam RS, Chen DR, Huang YW. 2010. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol in Vitro 24: 45–55.
  • Ivanov AI, McCall IC, Babbin B, Samarin SN, Nusrat A, Parkos CA. 2006. Microtubules regulate disassembly of epithelial apical junctions. Bmc Cell Biol 7:12.
  • Kahru A, Dubourguier H-C. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119.
  • Kiser MA, Westerhoff P, Benn T, Wang Y, Perez-Rivera J, Hristovski K. 2009. Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43: 6757–6763.
  • Leroueil PR, Hong SY, Mecke A, Baker JR, Orr BG, Holl MMB. 2007. Nanoparticle interaction with biological membranes: does nanotechnology present a janus face? Acc Chem Res 40:335–342.
  • Moore MN. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976.
  • Mouchet F, Landois P, Datsyuk V, Puech P, Pinelli E, Flahaut E, et al. 2011. International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ Toxicol 26:136–145.
  • Mouchet F, Landois P, Puech P, Pinelli E, Flahaut E, Gauthier L. 2010. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine 5:963–974.
  • Nations S, Long M, Wages M, Canas J, Maul JD, Theodorakis C, et al. 2011a. Effects of ZnO nanomaterials on Xenopus laevis growth and development. Ecotox Environ Safe 74:203–210.
  • Nations S, Wages M, Canas JE, Maul J, Theodorakis C, Cobb GP. 2011b. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 83:1053–1061.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–627.
  • Nohynek GJ, Antignac E, Re T, Toutain H. 2010. Safety assessment of personal care products/cosmetics and their ingredients. Toxicol Appl Pharmacol 243:239–259.
  • Orr G, Panther DJ, Phillips JL, Tarasevich BJ, Dohnalkova A, Hu DH, et al. 2007. Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells. ACS Nano 1:463–475.
  • Panyam J, Labhasetwar V. 2003. Dynamics of endocytosis and exocytosis of poly(D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharm Res Dord 20:212–220.
  • Parton RG, Simons K. 2007. The multiple faces of caveolae. Nat Rev Mol Cell Bio 8:185–194.
  • Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, et al. 2011. Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768.
  • Prins FA, Cornelese-ten Velde I, de Heer E. 2006. Reflection contrast microscopy: the bridge between light and electron microscopy. In: Taatjes DJ, Mossman BT, editors. Cell imaging techniques. Methods and protocols. Totowa: Humana Press. pp. 363–401.
  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D. 2004. Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem J 377:159–169.
  • Rincker MJ, Hill GM, Link JE, Meyer AM, Rowntree JE. 2005. Effects of dietary zinc and iron supplementation on mineral excretion, body composition, and mineral status of nursery pigs. J Anim Sci 83: 2762–2774.
  • Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. 2006. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol 40:4353–4359.
  • Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schaffler M, et al. 2012. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology 6:36–46.
  • Sealy C. 2011. ‘Safe-by-design' nanoparticles show reduced toxicity. Nano Today 6:113–114.
  • Shen L, Weber CR, Raleigh DR, Yu D, Tumer JR. 2011. Tight, junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309.
  • Shin K, Fogg VC, Margolis B. 2006. Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235.
  • Soenen SJ, Rivera-Gil P, Montenegro JM, Parak WJ, De Smedt SC, Braeckmans K. 2011. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6:446–465.
  • Steinbach PJ, Ionescu R, Matthews CR. 2002. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding. Biophys J 82:2244–2255.
  • Turney TW, Duriska MB, Jayaratne V, Elbaz A, O'Keefe SJ, Hastings AS, et al. 2012. Formation of zinc-containing nanoparticles from Zn2+ ions in cell culture media: implications for the nanotoxicology of ZnO. Chem Res Toxicol 25:2057–2066.
  • Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R. 2009. Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Hazard Mater 171:160–165.
  • Verma A, Uzun O, Hu YH, Hu Y, Han HS, Watson N, et al. 2008. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7:588–595.
  • Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, et al. 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134.
  • Xia TA, Zhao Y, Sager T, George S, Pokhrel S, Li N, et al. 2011. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235.
  • Xiong DW, Fang T, Yu LP, Sima XF, Zhu WT. 2011. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409: 1444–1452.
  • Yang H, Liu C, Yang DF, Zhang HS, Xi ZG. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78.
  • Zhu XS, Wang JX, Zhang XZ, Chang Y, Chen YS. 2009. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20:195103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.