370
Views
60
CrossRef citations to date
0
Altmetric
Original Article

Impact of non-functionalized and amino-functionalized multiwall carbon nanotubes on pesticide uptake by lettuce (Lactuca sativa L.)

, , &
Pages 172-180 | Received 04 Jan 2014, Accepted 18 Mar 2014, Published online: 10 Apr 2014

References

  • Abuilaiwi FA, Lauoi T, Al-Harthi M, Atieh MA. 2010. Modification and funcionalization of multiwalled carbon nanotube (MWCNT) via Fischer esterification. AJSE 35:37–48
  • Al-Degs YS, Al-Ghouti MA, El-Sheikh, AH. 2009. Simultaneous determination of pesticides at trace levels in water using multiwalled carbon nanotubes as solid-phase extractant and multivariate calibration. J Hazard Mater 169:128–35
  • Barak E, Dinoor A, Jacoby B. 1983. Adsorption of systemic fungicides and a herbicide by some components of plant tissues, in relation to some physicochemical properties of the pesticides. Pest Manag Sci 14:213–16
  • Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F. 2012. Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–4
  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, et al. 2008. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–31
  • Chamberlain K, Patel S, Bromilow RH. 1998. Uptake by roots and translocation to shoots of two morpholine fungicides in barley. Pestic Sci 54:1–7
  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, et al. 2010. Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–17
  • Costache MA, Campeanu G, Neata G. 2012. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom Biotechnol Lett 5:7702–8
  • Dakora DF, Phillips DA. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47
  • Das M, Saxena N, Dwidevi PD. 2009. Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology 3:10–18
  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, et al. 2012. Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environ Sci Technol 46:9315–23
  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, et al. 2013. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–47
  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2012. Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8:344–57
  • DropSens. 2013. Carbon nanotubes catalogue. Parque Tecnológico de Asturias – Edif. CEEI. 33428 LLanera, Asturias, Spain. Available at: www.dropsens.com
  • Gardea-Torresdey JL, Rico CM, White JC. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–40
  • Hamdi H, Benzarti S, Manusadžianas L, Aoyama I, Jedidi N. 2007. Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. Chemosphere 70:135–43
  • Ikhtiari R, Begum P, Watari F, Fugetsu B. 2013. Toxic effect of multiwalled carbon nanotubes on lettuce (Lactuca sativa). Nano Biomedicine 5:18–24
  • Incorvia-Mattina MJ, Iannucci-Berger W, Dykas L. 2000. Chlordane uptake and its translocation in food crops. J Agric Food Chem 48:1909–15
  • Jambunathan N. 2010. Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. In Sunkar R, eds. Plant Stress Tolerance, Methods in Molecular Biology 639, Chapter 18. New York: Springer, 292−8
  • Kahru A, Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269:105–19
  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–7. {Article retracted, ACS Nano, 6, 7541 (2012)}
  • Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, et al. 2011. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028–33
  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–35
  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE. 2013. Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–23
  • Krol WJ, Eitzer BD, Arsenault T, Fontana J, Kinney S, White JC. 2011. Pesticide residues in produce sold in Connecticut in 2010 with concurrent surveillance for microbial contamination. Connecticut Agricultural Experiment Station Technical Bulletin 6
  • Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS, Khodakovskaya M. 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 16:7965–73
  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, et al. 2012. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227–8:155–63
  • Lin DH, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–50
  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, et al. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–32
  • Liu Q, Zhao Y, Wan Y, Zheng J, Zhang X, Wang C, et al. 2010. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano 4:5743–8
  • Lu J, Li Y, Yan X, Shi B, Wang D, Tang H. 2009. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids Surf A Physicochem Eng Asp 347:90–6
  • Ma X, Wang C. 2010. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27:989–92
  • Mauter MS, Elimelech M. 2008. Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–59
  • Maysinger D. 2007. Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 15:2335–42
  • Migliore L, Cozzolino S, Fiore M. 2003. Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–44
  • Mikes O, Cupr P, Trapp S, Klanova J. 2009. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus). Environ Pollut 157:488–96
  • Miralles P, Johnson E, Church TL, Harris AT. 2012. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interface 9:3514–27
  • Mondal A, Basu R, Das S, Nandy P. 2011. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–28
  • Mota LC, Urena-Benavides EE, Yoon Y, Son A. 2013. Quantitative detection of single walled carbon nanotube in water using DNA and magnetic fluorescent spheres. Environ Sci Technol 47:493–501
  • Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K. 2014. Root exudation and root development of lettuce (Lactuca sativa L. cv Tizian) as affected by different soils. Front Microbiol 5:2 (1–6). doi: 10.3389/fmicb.2014.00002
  • OECD. 1984. Terrestrial plants, growth test. In Guidelines of the OECD for Testing Chemical Products. Paris: OECD Method 208
  • Pan B, Xing B. 2008. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005−13
  • Pyrzynska K. 2011. Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83:1407–13
  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agri Food Chem 59:3485–98
  • Roco MC, Hersam MC. 2011. Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook Summary. New York: Springer
  • Sheng G, Li J, Shao D, Hu J, Chen C, Chen Y, Wang X. 2010. Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178:333–40
  • Stampoulis D, Sinha SK, White JC. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9
  • Sun K, Zhang Z, Gao B, Wang Z, Xu D, Jin J, Liu X. 2012. Adsorption of diuron, fluridone and norflurazon on single-walled and multi-walled carbon nanotubes. Sci Total Environ 439:1–7
  • Tiwari DK, Dasgupta-Schubert N, Villaseñor-Cendejas LM, Villegas J, Carreto-Montoya L, Borjas-García SE. 2013. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci. doi: 10.1007/s13204-013-0236-7
  • USEPA. 1996. Seed germination/root elongation toxicity test. Ecological Effect Test Guidelines. OPPTS 850.400. EPA/712/C/96/154, 6
  • Villagarcia H, Dervishi E, Silva K, Biris AS, Khodakovskaya MV. 2012. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 8:2328–34
  • Wang L, Huang Y, Kan AT, Tomson MB, Chen W. 2012. Enhanced transport of 2,2′,5,5′-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60). Environ Sci Technol 46:5422–9
  • Wen ZD, Gao DW, Li Z, Ren NQ. 2013. Effects of humic acid on phthalate adsorption to vermiculite. Chem Eng J 223:298–303
  • White JC. 2000. Phytoremediation of weathered p,p′-DDE residues in soil. Int J Phytoremediat 2:133–44
  • Zhang L, Wang L, Zhang P, Kan AT, Chen W, Tomson MB. 2011. Facilitated transport of 2,2′,5,5′-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Environ Sci Technol 45:1341–8
  • Zhang Z, Kong F, Vardhanabhuti B, Mustapha A, Lin M. 2012. Detection of engineered silver nanoparticle contamination in pears. J Agri Food Chem 60:10762–7
  • Zhao MQ, Huang JQ, Zhang Q, Luo WL, Wei F. 2011. Improvement of oil adsorption performance by sponge-like natural vermiculite-carbon nanotube hybrid. Appl Clay Sci 53:1–7
  • Zhao P, Wang L, Zhou L, Zhang F, Kang S, Pan C. 2012. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A 1225:17–25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.