363
Views
37
CrossRef citations to date
0
Altmetric
Original Article

Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence

, , , , , & show all
Pages 302-312 | Received 19 Feb 2014, Accepted 15 May 2014, Published online: 25 Jun 2014

References

  • Abrams J, White K, Fessler L, Steller H. 1993. Programmed cell death during Drosophila embryogenesis. Development 117:29–43
  • Affleck JG, Neumann K, Wong L, Walker VK. 2006. The effects of methotrexate on Drosophila development, female fecundity, and gene expression. Toxicol Sci 89:495–503
  • Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. 2010. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242:263–9
  • Albanese A, Chan WC. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–89
  • Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. 2013. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186
  • Ashburner M. 1989. Drosophila. A Laboratory Handbook. New York, NY: Cold Spring Harbor Laboratory Press
  • Aureli F, D'amato M, De Berardis B, Raggi A, Turco AC, Cubadda F. 2012. Investigating agglomeration and dissolution of silica nanoparticles in aqueous suspensions by dynamic reaction cell inductively coupled plasma-mass spectrometry in time resolved mode. J Anal At Spectrom 27:1540–8
  • Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S, et al. 2012. Distribution of silver nanoparticles in pregnant mice and developing embryos. Nanotoxicology 6:912–22
  • Bai YH, Zhang Y, Zhang JP, Mu QX, Zhang WD, Butch ER, et al. 2010. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–9
  • Bate M, Arias AM. (1993). The Development of Drosophila melanogaster. New York, NY: Cold Spring Harbor Laboratory Press
  • Buszczak M, Cooley L. 2000. Eggs to die for: cell death during Drosophila oogenesis. Cell Death Differ 7:1071–4
  • Buszczak M, Freeman MR, Carlson JR, Bender M, Cooley L, Segraves WA. 1999. Ecdysone response genes govern egg chamber development during mid-oogenesis in Drosophila. Development 126:4581–9
  • Chu M, Wu Q, Yang H, Yuan R, Hou S, Yang Y, et al. 2010. Transfer of quantum dots from pregnant mice to pups across the placental barrier. Small 6:670–8
  • Das S, Debnath N, Patra P, Datta A, Goswami A. 2012. Nanoparticles influence on expression of cell cycle related genes in Drosophila: a microarray-based toxicogenomics study. Toxicol Environ Chem 94:952–7
  • Galeone A, Vecchio G, Malvindi MA, Brunetti V, Cingolani R, Pompa PP. 2012. In vivo assessment of CdSe–ZnS quantum dots: coating dependent bioaccumulation and genotoxicity. Nanoscale 4:6401–7
  • Gorth DJ, Rand DM, Webster TJ. 2011. Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–50
  • Homa S, Carroll J, Swann K. 1993. Fertilization and early embryology: the role of calcium in mammalian oocyte maturation and egg activation. Hum Reprod 8:1274–81
  • Kambe T, Weaver BP, Andrews GK. 2008. The genetics of essential metal homeostasis during development. Genesis 46:214–28
  • Kim AM, Vogt S, O'halloran TV, Woodruff TK. 2010. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 6:674–81
  • Mandilaras K, Pathmanathan T, Missirlis F. 2013. Iron absorption in Drosophila melanogaster. Nutrients 5:1622–47
  • Mccall K. 2004. Eggs over easy: cell death in the Drosophila ovary. Dev Biol 274:3–14
  • Mukhopadhyay I, Siddique HR, Bajpai VK, Saxena DK, Chowdhuri DK. 2006. Synthetic pyrethroid cypermethrin induced cellular damage in reproductive tissues of Drosophila melanogaster: Hsp70 as a marker of cellular damage. Arch Environ Contam Toxicol 51:673–80
  • Panacek A, Prucek R, Safarova D, Dittrich M, Richtrova J, Benickova K, et al. 2011. Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45:4974–9
  • Pandey A, Chandra S, Chauhan LK, Narayan G, Chowdhuri DK. 2013. Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta 1830:2256–66
  • Park MV, Annema W, Salvati A, Lesniak A, Elsaesser A, Barnes C, et al. 2009. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl Pharmacol 240:108–16
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. 2007. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–7
  • Philbrook NA, Winn LM, Afrooz A, Saleh NB, Walker VK. 2011. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257:429–36
  • Pompa PP, Vecchio G, Galeone A, Brunetti V, Sabella S, Maiorano G, et al. 2011. In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Research 4:405–11
  • Posgai R, Cipolla-McCulloch CB, Murphy KR, Hussain SM, Rowe JJ, Nielsen MG. 2011. Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85:34–42
  • Prasad M, Jang A, Starz-Gaiano M, Melani M, Montell D. 2007. A protocol for culturing Drosophila melanogaster stage 9 egg chambers for live imaging. Nat Protoc 2:2467–73
  • Roth S, Lynch J. 2009. Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol 1:1–21
  • Saunders M. 2009. Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:671–84
  • Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM. 2011. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410–20
  • Shanbhag S, Tripathi S. 2009. Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–44
  • Shen M, Cai H, Wang X, Cao X, Li K, Wang SH, et al. 2012. Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles. Nanotechnology 23:105601. doi: 10.1088/0957-4484/23/10/105601
  • Shiao NH. 2008. Cytotoxic effect of CdSe quantum dots on mouse embryonic development. Acta Pharmacol Sin 29:259–66
  • Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol 6:20. doi: 10.1186/1743-8977-6-20
  • Srivastava S, Awasthi R, Gajbhiye NS, Agarwal V, Singh A, Yadav A, Gupta RK. 2011. Innovative synthesis of citrate-coated superparamagnetic Fe3O4 nanoparticles and its preliminary applications. J Colloid Interface Sci 359:104–11
  • Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, et al. 2009. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 55:95–102
  • Tavosanis G, Gonzalez C. 2003. γ-Tubulin function during female germ-cell development and oogenesis in Drosophila. Proc Natl Acad Sci USA 100:10263–8
  • Tosti E. 2006. Calcium ion currents mediating oocyte maturation events. Reprod Biol Endocrinol 4:26. doi: 10.1186/1477-7827-4-26
  • Tripathi A, Chaube SK. 2012. High cytosolic free calcium level signals apoptosis through mitochondria-caspase mediated pathway in rat eggs cultured in vitro. Apoptosis 17:439–48
  • Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. 1996. Novel harmful effects of [60] fullerene on mouse embryos in vitro and in vivo. FEBS Lett 393:139–45
  • Turski ML, Thiele DJ. 2007. Drosophila Ctr1A functions as a copper transporter essential for development. J Biol Chem 282:24017–26
  • Uhrigshardt H, Rouault TA, Missirlis F. 2013. Insertion mutants in Hsc20 halt larval growth and lead to reduced iron-sulfur cluster enzyme activities and impaired iron homeostasis. J Biol Inorg Chem 18:441–9
  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Rizzello L, Sabella S, et al. 2012a. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomed Nanotechnol Biol Med 8:1–7
  • Vecchio G, Galeone A, Brunetti V, Maiorano G, Sabella S, Cingolani R, Pompa PP. 2012b. Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One 7:e29980
  • Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, et al. 2007. Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–43
  • Wang B, He X, Zhang ZY, Zhao YL, Feng WY. 2012a. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46:761–9
  • Wang B, Yin JJ, Zhou XY, Kurash I, Chai ZF, Zhao YL, Feng WY. 2012b. Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 117:383–92
  • Wang HJ, Wang M, Wang B, Meng XY, Wang Y, Li M, et al. 2009. Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer's disease using synchrotron radiation X-ray fluorescence analysis. J Anal At Spectrom 25:328–33
  • Wang Y, Wang B, Zhu MT, Li M, Wang HJ, Wang M, et al. 2011. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 205:26–37
  • Wang YXJ. 2011. Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40
  • Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321–8
  • Yang H, Sun C, Fan Z, Tian X, Yan L, Du L, et al. 2012. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep 2:847. doi: 10.1038/srep00847
  • Zhang J, Dong G, Thurber A, Hou Y, Gu M, Tenne DA, et al. 2012. Tuning the properties of ZnO, hematite, and Ag nanoparticles by adjusting the surface charge. Adv Mater 24:1232–7
  • Zhu MT, Feng WY, Wang B, Wang T, Gu Y, Wang M, et al. 2008. Comparative study of pulmonary responses to nano-and submicron-sized ferric oxide in rats. Toxicology 247:102–11
  • Zhu MT, Feng WY, Wang Y, Wang B, Wang M, Ouyang H, et al. 2009. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.