1,015
Views
132
CrossRef citations to date
0
Altmetric
Original Article

Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies

, , , , , & show all
Pages 313-325 | Received 29 Sep 2013, Accepted 26 May 2014, Published online: 01 Jul 2014

References

  • Albanese A, Chan WCW. 2011. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5:5478–89
  • Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci 90:7915–22
  • Bondarenko O, Ivask A, Käkinen A, Kahru A. 2012. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Environ Pollut 169:81–9
  • Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88:412–19
  • Burello E, Worth AP. (2012). Development and evaluation of structure–reactivity models for predicting the in vitro oxidative stress of metal oxide nanoparticles. In: Puzyn T & Leszczynski J, eds. Towards Efficient Designing of Safe Nanomaterials: Innovative Merge of Computational Approaches and Experimental Techniques. Cambridge, United Kingdom: Royal Society of Chemistry, 257–83
  • Burello E, Worth AP. 2011a. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology 5:228–35
  • Burello E, Worth AP. 2011b. QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:298–306
  • Cabiscol E., Piulats E, Echave P, Herrero E, Ros J. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 1:27393–8
  • Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. 2008. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112:13608–19
  • Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. 2007. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–5
  • Cho K, Lee Y, Lee CH, Lee K, Kim Y, Choi H, et al. 2008. Selective aggregation mechanism of unmodified gold nanoparticles in detection of single nucleotide polymorphism. J Phys Chem C 112:8629−33
  • Cho WS, Duffin R, Thielbeer F, Bradley M, Megson LL, MacNee W, et al. 2012. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci 126:469–77
  • Donaldson K, Poland CA, Murphy FA, Macfarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65:2078–86
  • Elsaesser A, Howard VC. 2012. Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–37
  • Fahmy B, Cormier SA. 2009. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–71
  • Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, Tropsha A. 2010. Quantitative nanostructure – activity relationship modeling. ACS Nano 4:5703–12
  • Fujita K, Morimoto Y, Ogami A, Myojyo T, Tanaka I, Shimada M, et al. 2009. Gene expression profiles in rat lung after inhalation exposure to C 60 fullerene particles. Toxicology 258:47–55
  • Gajewicz A, Puzyn T, Rasulev B, Leszczynska D, Leszczynski J. 2011. Metal oxide nanoparticles: size-dependence of quantum-mechanical properties. Nanosci Nanotech Asia 1:53–8
  • Gajewicz A, Rasulev B, Dinadayalane T, Urbaszek P, Puzyn T, Leszczynska D, Leszczynski J. 2012. Advancing risk assessment of engineered nanomaterials: application of computational approaches. Adv Drug Deliv Rev 64:1663–93
  • Gebauer JS, Treuel L. 2011. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles. J Colloid Interface Sci 354:546−54
  • Gramatica P. 2007. Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701
  • Gramatica P, Cassani C, Roy PP, Kovarich S, Wei YC, Papa E. 2012. QSAR modeling is not “push a button and find a correlation”: a case study of acute toxicity of (benzo-)triazoles on algae. Mol Inf 31:817–35
  • Halliwell B, Gutteridge JM. 1999. Free Radicals in Biology and Medicine. Oxford, United Kingdom: Oxford University Press
  • Handy RD, Owen R, Valsami-Jones E. 2008. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–25
  • Holland J. (1992). Adaptation in Natural and Artificial Systems. Michigan: MIT Press
  • Horie M, Fujita K. (2011). Toxicity of metal oxides nanoparticles. In: Fishbein JC, ed. Advances in Molecular Toxicology. Vol. 5. Oxford: Elsevier, 145–78
  • Hunter RJ. (1993). Introduction to Modern Colloid Science. Oxford, United Kingdom: Oxford University Press
  • Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–76
  • Jefferson DA. 2000. The surface activity of ultrafine particles. Phil Trans R Soc Lond A 358:2683–92
  • Jiang J, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77−99
  • Jiang J, Oberdörster G, Biswas P. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89
  • Kim D, El-Shall H, Dennis D, Morey T. 2005. Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf B Biointerfaces 40:83–91
  • Koga K, Ikeshoji T, Sugawara KI. 2004. Size- and temperature-dependent structural transitions in gold nanoparticles. Phys Rev Lett 92:115507 (1–4)
  • Kohut A, Voronov A, Peukert W. 2007. An effective way to stabilize colloidal particles dispersed in polar and non-polar media. Langmuir 23:504−8
  • Kumari M, Rajak S, Singh SP, Kumari SI, Kumar PU, Murty USN, et al. 2012. Repeated oral dose toxicity of iron oxide nanoparticles: biochemical and histopathological alterations in different tissues of rats. J Nanosci Nanotechnol 12:2149–59
  • Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF. 2009. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–79
  • Lide DR. (2006). CRC Handbook of Chemistry and Physics. Boca Raton (FL): CRC Press, Taylor & Francis Group
  • Limbach LK, Li YC, Grass RN, Brunner TJ, Hintermann MA, Muller M, et al. 2005. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370−6
  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ.2007. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–63
  • Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P. 1989. Universality in colloid aggregation. Nature 339:360–2
  • Lin W, Huang YW, Zhou XD, Ma Y. 2006. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–7
  • Linkov I, Steevens J, Adlakha-Hutcheon G, Bennett E, Chappell M, Colvin V, et al. 2009. Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop. J Nanopart Res 11:513–27
  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–70
  • Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP. 2010. Effects of cell culture media on the dynamic formation of protein – nanoparticle complexes and influence on the cellular response. ACS Nano 4:7481–91
  • Maynard AD, Kuempel ED. 2005. Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614
  • Meng H, Xia T, George S, Nel AE. 2009. A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–7
  • Migdal C, Rahal R, Rubod A, Callejon S, Colomb E, Atrux-Tallau N, et al. 2010. Internalisation of hybrid titanium dioxide/para-amino benzoic acid nanoparticles in human dendritic cells did not induce toxicity and changes in their functions. Toxicol Lett 199:34–42
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, SM H. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–53
  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature Mater 8:543–57
  • Oberdörster G. 2002. Toxicokinetics and effects of fibrous and non-fibrous particles. Inhal Toxicol 14:29–56
  • OECD Principles for the validation, for regulatory purposes, of (Quantittative) Structure Activity Relationship models. 37th Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology. 2004. Paris, France: Organisation for economic co-operation and development. Available at: http://www.oecd.org/env/ehs/riskassessment/validationofqsarmodels.html
  • Park S, Chibli H, Wong J, Nadeau JL. 2011. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates. Nanotechnology 22:185101–10
  • Portier J, Campet G, Poquet A, Marcel C, Subramanian MA. 2001. Degenerate semiconductors in the light of electronegativity and chemical hardness. Int J Inorg Mater 3:1039–43
  • Portier J, Hilal HS, Saadeddin I, Hwang SJ, Subramanian MA, Campet G. 2004. Thermodynamic correlations and band gap calculations in metal oxides. Prog Solid State Chem 32:207–17
  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM. 2007. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51
  • Prabhu BM, Ali SF, Murdock RC, Hussain SM, Srivatsan M. 2010. Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–60
  • Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, et al. 2011. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6:175–8
  • Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. 2010. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–19
  • Rausch K, Reuter A, Fischer K, Schmidt M. 2010. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11:2836–9
  • Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ. 2010. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano 4:5527–31
  • Roduner E. 2006. Size matters: why nanomaterials are different? Chem Soc Rev 35:583–92
  • Sahlin U. 2013. Uncertainty in QSAR predictions. Altern Lab Anim 41:111–25
  • Sahlin U, Golsteijn L, Sarfraz MI, Peijnenburg W. 2013. Arguments for considering uncertainty in QSAR predictions in hazard and risk assessments. Altern Lab Anim 41:91–110
  • Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lovry GV. 2008a. Ionic strength and composition affect the mobility of surface-modified fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42:3349–55
  • Saleh NB, Pfefferle LD, Elimeiech M. 2008b. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications. Environ Sci Technol 42:7963–9
  • Saleh NB, Pfefferle LD, Elimeiech M. 2010. Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412–18
  • Sarfraz MI, Golsteijn L, Öberg T, Sahlin U, Papa E, Kovarich S, Huijbregts MJ. 2013. Understanding quantitative structure–property relationships uncertainty in environmental fate modeling. Environ Toxicol Chem 32:1069–76
  • Sayes CM, Gobin AM, Ausman KD, Mendez J, West JL, Colvin VL 2005. Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26:7587–95
  • Sayes CM, Marchione AA, Reed KL, Warheit DB. 2007. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7:2399–406
  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. 2010. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:544–68
  • Segets D, Marczak R, Schäfer S, Paula C, Gnichwitz JF, Hirsch A, Peukert W. 2011. Experimental and theoretical studies of the colloidal stability of nanoparticles: a general interpretation based on stability maps. ACS Nano 5:4658−69
  • Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. 2012. Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261:121–33
  • Stewart JJP. 2009. MOPAC2009. S.C. Chemistry, Editor 2009. p. Available at: http://openmopac.net/MOPAC2009.html (Accessed 02 April 2012).
  • Stewart JJP. 2007. Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–213
  • Stewart JJP. 2013. Optimization of parameters for semi-empirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 19:1–32
  • Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–36
  • Tropsha A, Gramatica P, Gombar VK. 2003. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77
  • Turabekova M, Rasulev B, Theodor M, Jackman J, Leszczynska D, Leszczynski J. 2014. Immunotoxicity of nanoparticles: computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale 6:3488–95
  • Turrens JF. 2003. Mitochondrial formation of reactive oxygen spicies. J Physiol 552:335–44
  • Wang Y, Yang F, Zhang X-H, Zi X-Y, Pan X-H, Chen F, et al. 2013. Cuprous oxide nanoparticles inhibit growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 4:e783. doi: 10.1038/cddis.2013.314
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–25
  • Winklera DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ. 2013. Applying quantitative structure–activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313:15–23
  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam C, Liu R, et al. 2012. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6:4349–68
  • Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT. 2011. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology 5:517–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.