504
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo

&
Pages 365-372 | Received 15 Apr 2014, Accepted 09 Jun 2014, Published online: 01 Jul 2014

References

  • Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, et al. 2013. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-reactivity via the mobilization of innate helper cells in the lung. Nanotoxicology 7:1070–81
  • Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, Bonner JC 2010. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43:142–51
  • Chen GY, Nunez G. 2010. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–37
  • Dave SH, Tilstra JS, Matsuoka K, Li F, Demarco RA, Beer-Stolz D, Sepulveda AR, et al. 2009. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol 86:633–43
  • Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. 2011. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30:4701–11
  • Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3:995–1001
  • Ghonime MG, Shamaa OR, Das S, Eldomany RA, Fernandes-Alnemri T, Alnemri ES, et al. 2014. Inflammasome priming by lipopolysaccharide is dependent upon ERK signaling and proteasome function. J Immunol 192:3881–8
  • Girtsman TA, Beamer CA, Wu N, Buford M, Holian A. 2012. IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice. Nanotoxicology 8:17–27
  • Glista-Baker EE, Taylor AJ, Sayers BC, Thompson EA, Bonner JC. 2014. Nickel nanoparticles cause exaggerated lung and airway remodeling in mice lacking the T-box transcription factor, TBX21 (T-bet). Particle Fibre Toxicol 11:7. doi: 10.1186/1743-8977-11-7
  • Hamada N, Maeyama T, Kawaguchi T, Yoshimi M, Fukumoto J, Yamada M, et al. 2008. The role of high mobility group box1 in pulmonary fibrosis. Am J Respir Cell Mol Biol 39:440–7
  • Hamilton RF, Buford MC, Wood MB, Arnone B, Morandi M, Holian A. 2007. Engineered carbon nanoparticles alter macrophage immune function and initiate airway hyper-responsiveness in the BALB/c mouse model. Nanotoxicology 1:104–17
  • Hamilton RF Jr, Buford M, Xiang C, Wu N, Holian A. 2012. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24:995–1008
  • Hamilton RFJ, Wu Z, Mitra S, Shaw PK, Holian A. 2013. Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10:57. doi: 10.1186/1743-8977-10-57
  • Hreggvidsdottir HS, Ostberg T, Wahamaa H, Schierbeck H, Aveberger AC, Klevenvall L, et al. 2009. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation. J Leukoc Biol 86:655–62
  • Kew RR, Penzo M, Habiel DM, Marcu KB 2012. The IKKalpha-dependent NF-kappaB p52/RelB noncanonical pathway is essential to sustain a CXCL12 autocrine loop in cells migrating in response to HMGB1. J Immunol 188:2380–6
  • Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F, Asehnoune K, et al. 2005. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 288:L958–65
  • Lacher SE, Johnson C, Jessop F, Holian A, Migliaccio CT 2010. Murine pulmonary inflammation model: a comparative study of anesthesia and instillation methods. Inhal Toxicol 22:77–83
  • Lamkanfi M, Sarkar A, vande Walle L, Vitari AC, Amer AO, Wewers MD, et al. 2010. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol 185:4385–92
  • Leblanc PM, Doggett TA, Choi J, Hancock MA, Durocher Y, Frank F, et al. 2014. An Immunogenic Peptide in the A-box of HMGB1 Protein Reverses Apoptosis-induced Tolerance through RAGE Receptor. J Biol Chem 289:7777–86
  • Liou TG, Adler FR, Keogh RH, Li Y, Jensen JL, Walsh W, et al. 2012. Sputum biomarkers and the prediction of clinical outcomes in patients with cystic fibrosis. PLoS One 7:e42748
  • Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–26
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, et al. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Particle Fibre Toxicol 8:21. doi: 10.1186/1743-8977-8-21
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, et al. 2013. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Particle Fibre Toxicol 10:33. doi: 10.1186/1743-8977-10-33
  • Palomaki J, Valimaki E, Sund J, Vippola M, Clausen PA, Jensen KA, et al. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5:6861–70
  • Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, et al. 2006. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–24
  • Pisetsky DS. 2014. The Expression of HMGB1 on microparticles released during cell activation and cell death in vitro and in vivo. Mol Med 20:158–63
  • Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-BERRY D, Andrew M, Castranova V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2:144–154
  • Scaffidi P, Misteli T, Bianchi ME 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–5
  • Schwartz DA 2001. Inhaled endotoxin, a risk for airway disease in some people. Respir Physiol 128:47–55
  • Sha Y, Zmijewski J, Xu Z, Abraham E. 2008. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol 180:2531–7
  • Shim EJ, Chun E, Lee HS, Bang BR, Kim TW, Cho SH, et al. 2012. The role of high-mobility group box-1 (HMGB1) in the pathogenesis of asthma. Clin Exp Allergy 42:958–65
  • Stros M. 2010. HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 1799:101–13
  • Ueno H, Matsuda T, Hashimoto S, Amaya F, Kitamura Y, Tanaka M, et al. 2004. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Am J Respir Crit Care Med 170:1310–16
  • Ullah MA, Loh Z, Gan WJ, Zhang V, Yang H, Li JH, et al. 2014. Receptor for advanced glycation end products and its ligand high-mobility group box-1 mediate allergic airway sensitization and airway inflammation. J Allergy Clin Immunol . [Epub ahead of print]. doi: 10.1016/j.jaci.2013.12.1035
  • van Zoelen MA, Ishizaka A, Wolthuls EK, Choi G, van der Poll T, Schultz MJ 2008. Pulmonary levels of high-mobility group box 1 during mechanical ventilation and ventilator-associated pneumonia. Shock 29:441–5
  • Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, de Marchis F, et al. 2012. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209:1519–28
  • Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–51
  • Wang H, Yang H, Tracey KJ 2004. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med 255:320–31
  • Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, et al. 2009. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 183:2008–15
  • Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, et al. 2010a. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA 107:11942–7
  • Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. 2010b. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci USA 107:12611–16
  • Yang H, Lundback P, Ottosson L, Erlandsson-Harris H, Venereau E, Bianchi ME, et al. 2012. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 18:250–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.