187
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Development toxicity of functionalized single-walled carbon nanotubes on rare minnow embryos and larvae

, , , &
Pages 579-590 | Received 22 Mar 2014, Accepted 25 Jul 2014, Published online: 11 Sep 2014

References

  • Alazzam A, Mfoumou E, Stiharu I, Kassab A, Darnel A, Yasmeen A, et al. 2010. Identification of deregulated genes by single wall carbon-nanotubes in human normal bronchial epithelial cells. Nanomedicine 6:563–9
  • Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N, et al. 2008. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8:3899–903
  • Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. 2013. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch Environ Contam Toxicol 65:224–33
  • Banni M, Hajer A, Sforzini S, Oliveri C, Boussetta H, Viarengo A. 2014. Transcriptional expression levels and biochemical markers of oxidative stress in Mytilus galloprovincialis exposed to nickel and heat stress. Comp Biochem Physiol C Toxicol Pharmacol 160:23–9
  • Chan PK, Cheng SH. 2003. Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch Toxicol 77:69–79
  • Cheng J, Chan CM, Veca LM, Poon WL, Chan PK, Qu L, et al. 2009. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio). Toxicol Appl Pharmacol 235:216–25
  • Cheng J, Cheng SH. 2012. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine 7:3731–9
  • Cheng J, Fernando KA, Veca LM, Sun YP, Lamond AI, Lam YW, et al. 2008. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano 2:2085–94
  • Cheng J, Flahaut E, Cheng SH. 2007. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Env Toxicol Chem 26:708–16
  • Chen PH, Hsiao KM, Chou CC. 2013. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 34:5661–9
  • Chen T, Zhang L, Yue JQ, Lv ZQ, Xia W, Wan YJ, et al. 2012. Prenatal PFOS exposure induces oxidative stress and apoptosis in the lung of rat off-spring. Reprod Toxicol 33:538–45
  • Colman BP, Espinasse B, Richardson CJ, Matson CW, Lowry GV, Hunt DE, et al. 2014. Emerging contaminant or an old toxin in disguise? Silver nanoparticle impacts on ecosystems. Environ Sci Technol 48:5229–36
  • DeMicco A, Cooper KR, Richardson JR, White LA. 2010. Developmental neurotoxicity of pyrethroid insecticides in zebrafish embryos. Toxicol Sci 113:177–86
  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, et al. 2007. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45:1419–24
  • Desagher S, Martinou JC. 2000. Mitochondria as the central point of apoptosis. Trends Cell Biol 10:369–77
  • Eimon PM, Kratz E, Varfolomeev E, Hymowitz SG, Stern H, Zha J, et al. 2006. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ 13:1619–30
  • Gannon CJ, Cherukuri P, Yakobson BI, Cognet L, Kanzius JS, Kittrell C, et al. 2007. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110:2654–65
  • Ghafari P, St-Denis CH, Power ME, Jin X, Tsou V, Mandal HS, et al. 2008. Impact of carbon nanotubes on the ingestion and digestion of bacteria by ciliated protozoa. Nat Nanotechnol 3:347–51
  • Hamilton MA, Russo RC, Thurston RV. 1978. Trimmed Spearman–Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol 12:714–20
  • Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, et al. 2002. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2:311–14
  • Hyung H, Fortner JD, Hughes JB, Kim JH. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41:179–84
  • Jani P, Halbert GW, Langridge J, Florence AT. 1990. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–6
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, et al. 2010. Critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4:207–46
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, et al. 2010. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5:354–9
  • Kashiwada S. 2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–702
  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, et al. 2013. Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–8
  • Li W, Chen C, Ye C, Wei T, Zhao Y, Lao F, et al. 2008. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis. Nanotechnology 19:145102
  • Liao T, Jin S, Yang FX, Yang H, Xu Y. 2006. An enzyme-linked immunosorbent assay for rare minnow (Gobiocypris rarus) vitellogenin and comparison of vitellogenin responses in rare minnow and zebrafish (Danio rerio). Sci Total Environ 364:284–94
  • Liu C, Yu K, Shi X, Wang J, Lam PK, Wu RS, et al. 2007. Induction of oxidative stress and apoptosis by PFOS and PFOA in primary cultured hepatocytes of freshwater tilapia (Oreochromis niloticus). Aquat Toxicol 82:135–43
  • Liu Y, Zhao Y, Sun B, Chen C. 2013. Understanding the toxicity of carbon nanotubes. Acc Chem Res 46:702–13
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–8
  • Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–9
  • Mouchet F, Landois P, Flahaut E, Pinelli E, Gauthier L. 2007. Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum. Nanotoxicology 1:149–56
  • Nagata S. 2000. Apoptotic DNA fragmentation. Exp Cell Res 256:12–18
  • Nagel R. 2002. DarT: the embryo test with the zebrafish Danio rerio – a general model in ecotoxicology and toxicology. ALTEX 19:38–48
  • Pulskamp K, Diabaté S, Krug HF. 2007. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74
  • Ramsden CS, Henry TB, Handy RD. 2013. Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquat Toxicol 126:404–13
  • Roman D, Yasmeen A, Mireuta M, Stiharu I, Al Moustafa AE. 2013. Significant toxic role for single-walled carbon nanotubes during normal embryogenesis. Nanomedicine 9:945–50
  • Schoenebeck JJ, Yelon D. 2007. Illuminating cardiac development: advances in imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18:27–35
  • Scown TM, van Aerle R, Tyler CR. 2010. Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–70
  • Shao B, Zhu L, Dong M, Wang J, Wang J, Xie H, et al. 2012. DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21:1533–40
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–91
  • Smith CJ, Shaw BJ, Handy RD. 2007. Toxicity of single walled carbon nanotubes on rainbow trout (Oncorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109
  • Templeton RC, Lee Ferguson P, Washburn KM, Scrivens WA, Chandler GT. 2006. Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40:7387–93
  • Thayer AM. 2007. Carbon nanotubes by the metric ton. Chem Eng News 85:29–35
  • Wang H, Liang Y, Li S, Chang J. 2013. Acute toxicity, respiratory reaction, and sensitivity of three cyprinid fish species caused by exposure to four heavy metals. PLoS One 8:e65282
  • Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, et al. 2010. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33:276–80
  • Yang LH, Zha JM, Li W, Li ZL, Wang ZJ. 2010. Atrazine affects kidney and adrenal hormones (AHs) related genes expressions of rare minnow (Gobiocypris rarus). Aquat Toxicol 97:204–11
  • Zhao X, Wang S, Wu Y, You H, Lv L. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136–137:49–59
  • Zhou QF, Jiang GB, Liu JY. 2002. Effects of sulethal levels of tributyltin chloride in a new toxicity test organism: the Chinese rare minnow (Gobiocypris rarus). Arch Environ Contam Toxicol 42:332–7
  • Zhu B, Gong YX, Liu L, Li DL, Wang Y, Ling F, et al. 2014. Toxic effects of triazophos on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 108:46–54
  • Zhu B, Liu TQ, Hu XG, Wang GX. 2013. Developmental toxicity of 3,4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 90:1132–9
  • Zhu B, Wu ZF, Li J, Wang GX. 2011. Single and joint action toxicity of heavy metals on early developmental stages of Chinese rare minnow (Gobiocypris rarus). Ecotoxicol Environ Saf 74:2193–202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.