915
Views
50
CrossRef citations to date
0
Altmetric
Review Article

Perspectives on percutaneous penetration: Silica nanoparticles

, &
Pages 643-657 | Received 01 Feb 2014, Accepted 20 Aug 2014, Published online: 06 Oct 2014

References

  • Alikhan FS, Maibach HI. 2011. Topical absorption and systemic toxicity. Cutan Ocul Toxicol 30:175–86
  • Alnasif N, Zoschke C, Fleige E, Brodwolf R, Boreham A, Rühl E, et al. 2014. Penetration of normal, damaged and diseased skin – an in vitro study on dendritic core-multishell nanotransporters. J Control Release 185C:45–50
  • Ambrogi V, Latterini L, Marmottini F, Pagano C, Ricci M. 2013. Mesoporous silicate MCM-41 as a particulate carrier for octyl methoxycinnamate: sunscreen release and photostability. J Pharm Sci 102:1468–75
  • Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M. 2004. Silica particles: a novel drug-delivery system. Adv Mater 16:1959–66
  • Bätz F, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, et al. 2013. Esterase activity in excised and reconstructed human skin – biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm 84:374–85
  • Benezra M, Penate-Medina O, Zanzonico P.B, Schaer D, Ow H, Burns A, et al. 2011. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–80
  • Berlier G, Gastaldi L, Ugazio E, Miletto I, Iliade P, Sapino S. 2013a. Stabilization of quercetin flavonoid in MCM-41 mesoporous silica: positive effect of surface functionalization. J Colloid Interface Sci 393:109–18
  • Berlier G, Gastaldi L, Sapino S, Miletto I, Bottinelli E, Chirio D, et al. 2013b. MCM-41 as a useful vector for rutin topical formulations: synthesis, characterization and testing. Int J Pharm 457:177–86
  • Bernstein IA, Vaughan FL. 1999. Cultured keratinocytes in in vitro dermatotoxicological investigation: a review. J Toxicol Environ Health B 2:1–30
  • Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, et al. 2005. Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102:11539–44
  • Boonen J, Baert B, Lambert J, De Spiegeleer B. 2011. Skin penetration of silica microparticles. Pharmazie 66:463–4
  • Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. 2003. Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36
  • Butz T. 2009. Dermal penetration of nanoparticles – What we know and what we don’t. SöFW J10 135:30–4
  • Chen Y, Chen H, Shi J. 2013. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 18:3144–76
  • Choi M, Cho WS, Han BS, Cho M, Kim SY, Yi JY, et al. 2008. Transient pulmonary fibrogenic effect induced by intratracheal instillation of ultrafine amorphous silica in A/J mice. Toxicol Lett 182:97–101
  • Choi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi M.G, et al. 2010. Design considerations for tumor-targeted nanoparticles. Nat Nanotechnol 5:42–7
  • Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, et al. 2009. Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82:1043–55
  • De Louise LA. 2012. Applications of nanotechnology in dermatology. J Invest Dermatol 132:964–75
  • De Villiers MM, Aramwit P, Kwon GS. 2009. Nanotechnology in Drug Delivery. Springer: AAPS Press
  • Do N, Weindl G, Grohmann L, Salwiczek M, Koksch B, Korting HC, et al. 2014. Cationic membrane-active peptides – anticancer and antifungal activity as well as penetration into human skin. Exp Dermatol 23:326–31
  • ECETOC. 2006. Synthetic amorphous silica (CAS No. 7631-86-9) – JACC REPORT No. 51. European Centre for Ecotoxicology and Toxicology of Chemicals, Brussels ISSN-0773-6339-51
  • Elias Z, Poirot O, Daniere M.C, Terzetti F, Marande AM, Dzwigaj S, et al. 2000. Cytotoxic and transforming effects of silica particles with different surface properties in Syrian hamster embryo (SHE) cells. Toxicol In Vitro 14:409–22
  • Escobar-Chávez JJ, Merino-Sanjuan V, Lopez-Cervantes M, Urban-Morlan Z, Pinon-Segundo E, Quintanar-Guerrero D, et al. 2008. The tape stripping technique as a method for drug qualification in skin. J Pharm Pharm Sci 11:104–30
  • EU Commission Recommendation. 2011. Definition of nanomaterial. Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF
  • Fenoglio I, Martra G, Coluccia S, Fubini B. 2000. Possible role of ascorbic acid in the oxidative damage induced by inhaled crystalline silica particles. Chem Res Toxicol 13:971–5
  • Franz J. 1975. Percutaneous absorption on the relevance of in-vitro data. J Invest Dermatol 67:190–5
  • Friedman R. 2011. Nano dot technology enters clinical trials. J Natl Cancer Inst 103:1428–9
  • Fruijtier-Pölloth C. 2012. The toxicological mode of action and the safety of synthetic amorphous silica-A nanostructured material. Toxicology 294:61–79
  • Gamer AO, Leibold E, van Ravenzwaay B. 2006. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–7
  • Garcia-Bennett AE. 2011. Synthesis, toxicology and potential of ordered mesoporous materials in nanomedicine. Nanomedicine 6:867–77
  • Gastaldi L, Ugazio E, Sapino S, Iliade P, Miletto I, Berlier G. 2012. Mesoporous silica as a carrier for topical application: the Trolox case study. Phys Chem Chem Phys 14:11318–26
  • Georgia State University. Hyperphysics. Abundances of the elements in the earth's crust. Available at: http://hyperphysics.phy-astr.gsu.edu/hbase/tables/elabund.html
  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. 2009a. Chemical stability and phase distribution of all-trans-retinol in nanoparticle-coated emulsions. Int J Pharm 376:186–94
  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. 2009b. Nanoparticle coated emulsions as novel dermal delivery vehicles. Curr Drug Deliv 6:367–73
  • Ghouchi-Eskandar N, Simovic S, Prestidge CA. 2012. Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol. Int J Pharm 423:384–91
  • Götz C, Pfeiffer R, Tigges J, Blatz V, Jäckh C, Freytag EM, et al. 2012. Xenobiotic metabolism capacities of human skin in comparison with a 3D epidermis model and keratinocyte-based cell culture as in vitro alternatives for chemical testing: activating enzymes (Phase I). Exp Dermatol 1:358–63
  • Guth K, Riviere JE, Brooks JD, Dammann M, Fabian E, van Ravenzwaay B, et al. 2014. In silico models to predict dermal absorption from complex agrochemical formulations. SAR QSAR Environ Res 25:565–88
  • Hayes AW, Kruger CL. 2014. Hayes' Principles and Methods of Toxicology. New York: CRC Press
  • Hoffmann F, Cornelius M, Morell J, Fröba M. 2006. Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45:3216–51
  • Higaki K, Nakayama K, Suyama T, Amnuaikit C, Ogawara K, Kimura T. 2005. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin. Int J Pharm 288:227–33
  • Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi K, et al. 2012. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol 9:3–14
  • Hudson SP, Padera RF, Langer R, Kohane DS. 2008. The biocompatibility of mesoporous silicates. Biomaterials 29:4045–55
  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. 1997. Silica, some silicates, coal dust and para-aramid fibrils 68:1–475
  • Iier RK. 1979. The Chemistry of Silica. New York: John Wiley & Sons
  • IMA Europe. 2014. Crystalline silica and health from a European industry perspective. Available at: www.crystallinesilica.eu
  • Jacobi U, Engel K, Patzelt A, Worm M, Sterry W, Lademann J. 2007. Penetration of pollen proteins into the skin. Skin Pharmacol Physiol 20:297–304
  • Jäckh C, Blatz V, Fabian E, Guth K, van Ravenzwaay B, Reisinger K, et al. 2011. Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models. Toxicol In Vitro 25:1209–14
  • Korting HC, Schäfer-Korting M. 2010. Carriers in the topical treatment of skin disease. Handb Exp Pharmacol 197:435–68
  • Kresge CT, Leonowicz ME, Roth WJ, Vartul JC, Beck JS. 1992. Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature 359:710–12
  • Kreyling WG, Behnke MS, Chaudhry Q. 2010. A complementary, definition of nanomaterial. Nano Today 5:165–8
  • Labouta HI, Schneider M. 2013. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomed: Nanotechnol Biol Med 9:39–54
  • Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. 2009. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt 14:021014-1–4
  • Lademann J, Richter H, Schaefer UF, Blume-Peytavi U, Teichmann A, Otberg N, et al. 2006. Hair follicles – a long-term reservoir for drug delivery. Skin Pharmacol Physiol 19:232–6
  • Leach DR, Krummel MF, Allison J.P. 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–6
  • Lee CH, Cheng SH, Wang YJ, Chen YC, Chen NT, Souris J, et al. 2009. Near-infrared mesoporous silica nanoparticles for optical imaging: characterization and in vivo biodistribution. Adv Funct Mater 19:215–22
  • Lei C, Liu P, Chen B, Mao Y, Engelmann H, Shin Y, et al. 2010. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy. J Am Chem Soc 132:6906–7
  • Liu J, Qiao SZ, Chen JS, Lou XWD, Xing X, Lu GQM. 2011. Yolk/shell nanoparticles: new platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem Commun 47:12578–91
  • Lou XWD, Archer LA, Yang Z. 2008. Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019
  • Low SP, Voelcker NH, Canham LT, Williams KA. 2009. The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30:2873–80
  • Mangelsdorf S, Otberg N, Maibach HI, Sinkgraven R, Sterry W, Lademann J. 2006. Ethnic variation in vellus hair follicle size and distribution. Skin Pharmacol Physiol 19:159–67
  • Marzulli F.N, Maibach H.I. 1975. Relevance of animal models – the hexachlorophene story. In Maibach HI, ed. Animal Models in Dermatology. Edinburgh: Churchill Living Stone, 156–67
  • Mavon A, Miquel C, Lejeune O, Payre B, Moretto P. 2007. In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20
  • Meinke MC, Patzelt A, Richter H, Schanzer S, Sterry W, Filbry A, et al. 2011. Prevention of follicular penetration: barrier-enhancing formulations against the penetration of pollen allergens into hair follicles. Skin Pharmacol Physiol 24:144–50
  • Menczel E, Maibach HI. 1970. In vitro human percutaneous penetration of benzyl alcohol and testosterone: epidermal–dermal retention. J Invest Dermatol 54:386–94
  • Michel K, Scheel J, Karsten S, Stelter N, Wind T. 2013. Risk assessment of amorphous silicon dioxide nanoparticles in a glass cleaner formulation. Nanotoxicology 7:974–88
  • Moger J, Johnston BD, Tyler CR. 2008. Imaging metal oxide nanoparticles in biological structures with CARS microscopy. Opt Express 16:3408–19
  • Monteiro-Riviere NA, Inman AO. 2006. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44:1070–8
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Tochigi S, Kondoh S, et al. 2011a. Amorphous nanosilica induce endocytosis dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1–10
  • Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Matsuo K, Arimori A, et al. 2011b. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials 32:2713–24
  • Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39–71
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–21
  • Ngo MA, Malley MO, Maibach HI. 2010. Percutaneous absorption and exposure assessment of pesticides. J Appl Toxicol 30:91–114
  • Ngo MA, Malley MO, Maibach HI. 2012. Perspectives on percutaneous penetration of nanomaterials. In Nasir A, Friedman A, Wang S, eds. Nanotechnology in Dermatology. New York: Springer, 63–86
  • Nigg H.N, Stamper JH. 1989. Biological monitoring for pesticide dose determination. In Wang RGM, Franklin CA, Honeycutt RC, Reinert JC, eds. Biological Monitoring for Pesticide Exposure: Measurement, Estimation, and Risk Reduction. Washington DC: American Chemical Society, 6–27
  • Nohynek GJ, Lademann J, Ribaud C, Roberts MS. 2007. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251–77
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8
  • OECD SIDS. 2004. Synthetic amorphous silica and silicates. Available at: http://www.chem.unep.ch/irptc/sids/oecdsids/Silicates.pdf
  • OSHA 3177. Occupational Safety and Health Administration. 2002. Crystalline silica exposure. Health hazard information for construction employees. Available at: https://www.osha.gov/Publications/osha3177.pdf
  • Ostrowski A, Nordmeyer D, Boreham A, Brodwolf R, Mundhenk L, Fluhr JW. in press. Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine
  • Otberg N, Patzelt A, Rasulev U, Hagemeister T, Linscheid M, Sinkgraven R, et al. 2008. The role of hair follicles in the percutaneous absorption of caffeine. Br J Clin Pharmacol 65:488–92
  • Otterstedt JE, Brandreth DA. 1998. Small Particles Technology. New York: Plenum Press
  • Park YH, Bae HC, Jang Y, Jeong SH, Lee HN, Ryu WI, et al. 2013. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol 9:67–74
  • Park YH, Kim JN, Jeong SH, Choi JE, Lee SH, Choi BH, et al. 2010. Assessment of dermal toxicity of nanosilica using cultured keratinocytes, a human skin equivalent model and an in vivo model. Toxicology 267:178–81
  • Patzelt A, Richter H, Knorr F, Schafer U, Lehr CM, Dahne L, et al. 2011. Selective follicular targeting by modification of the particle sizes. J Control Release 150:45–8
  • Pfluecker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, et al. 2001. The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 14:92–7
  • Piao Y, Burns A, Kim J, Wiesner U, Hyeon T. 2008. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18:3745–58
  • Pilloni M, Ennas G, Casu M, Fadda AM, Frongia F, Marongiu F, et al. 2013. Drug silica nanocomposite: preparation, characterization and skin permeation studies. Pharm Dev Technol 18:626–33
  • Poland CA, Read SAK, Varet J, Carse G, Christensen FM, Hankin SM. 2013. Dermal absorption of nanaomaterials. Environmental Project No. 1504. Denmark: The Danish Environmental Protection Agency
  • Prausnitz MR, Elias PM, Franz TJ, Schmuth M, Tsai JC, Menon GK, et al. 2012. Skin barrier and transdermal drug delivery. In: Bolognia J, Jorizzo JL, Schaffer JV, eds. Dermatology. Philadelphia, PA: Elsevier Saunders, 2065–73
  • Proksch E, Brandner JM, Jensen JM. 2008. The skin: an indispensable barrier. Exp Dermatol 17:1063–72
  • Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. 2011. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–91
  • Quignard S, Mosser G, Boissière M, Coradin T. 2012. Long-term fate of silica nanoparticles interacting with human dermal fibroblasts. Biomaterials 33:4431–42
  • Rancan F, Gao Q, Graf C, Troppens S, Hadam S, Hackbarth S, et al. 2012. Skin penetration and cellular uptake of amorphous silica nanoparticles with variable size, surface functionalization, and colloidal stability. ACS Nano 6:6829–42
  • Rosenholm JM, Sahlgren C, Linden M. 2011. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr Drug Targets 12:1166–86
  • Rougier A, Lotte C, Maibach HI. 1987. In vivo percutaneous penetration of some organic compounds related to anatomic site in humans: predictive assessment by the stripping method. J Pharm Sci 76:451–4
  • Scalia S, Franceschinis E, Bertelli D, Iannuccelli V. 2013. Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol 26:57–67
  • SCCP – Scientific Committee on Consumer Products. 2007. Preliminary opinion on safety of nanomaterials in cosmetic products. Available at: http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_099.pdf
  • Scheuplein RJ. 1967. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol 48:79–88
  • Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, et al. 2009. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–34
  • Scodeller P, Catalano PN, Salguero N, Duran H, Wolosiuk A, Soler-Illia G.J.A.A. 2013. Hyaluronan degrading silica nanoparticles for skin cancer therapy. Nanoscale 5:9690–8
  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. 2008. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–88
  • Slowing II, Vivero-Escoto JL, Trewyn BG, Lin VSY. 2010. Mesoporous silica nanoparticles: structural design and applications. J Mater Chem 20:7924–37
  • Smith EW, Maibach HI. 2006. Percutaneous Penetration Enhancers. Boca Raton: CRC Press
  • Som C, Wick P, Krug H, Nowack B. 2011. Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37:1131–42
  • Stöber W, Fink A. 1968. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–9
  • Takahashi H, Yoshioka Y, Hirai T, Ichihashi KI, Nishijima N, Yoshida T, et al. 2013. The size effects of amorphous silica nanoparticles on atopic dermatitis-like skin lesion (P6259). J Immunol 190:181.12
  • Tang L, Cheng J. 2013. Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:290–312
  • Tang F, Li L, Chen D. 2012. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–34
  • Thurn KT, Brown E, Wu A, Vogt S, Lai B, Maser J, et al. 2007. Nanoparticles for applications in cellular imaging. Nanoscale Res Lett 2:430–41
  • Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol 123:168–76
  • Tregear RT. 1966. Physical Functions of Skin. London: Academic Press
  • Trommer H, Neubert RH. 2006. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 19:106–21
  • Tsunoda S. 2011. Transdermal penetration and biodistribution of nanomaterials and their acute toxicity in vivo. Yakugaku Zasshi 131:203–7
  • Unger KK. 1979. Porous Silica. Amsterdam, Oxford, New York: Elsevier
  • Vallet-Regi M, Balas F, Arcos D. 2007. Mesoporous materials for drug delivery. Angew Chem, Int Ed 46:7548–58
  • Van Blaadern A, Van Geest J, Vrij A. 1992. Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154:481–501
  • Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 2006. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol 126:1316–22
  • Wan Y, Zhao DY. 2007. On the controllable soft-templating approach to mesoporous silicates. Chem Rev 107:2821–60
  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, et al. 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553–69
  • Welsher K, Sherlock SP, Dai H. 2011. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. PNAS 108:8943–8
  • Wester RC, Noonan PK, Maibach HI. 1977. Frequency of application on percutaneous absorption of hydrocortisone. Arch Dermatol 113:620–2
  • Wester RC, Noonan PK, Maibach HI. 1980. Variations in percutaneous absorption of testosterone in the rhesusmonkey due to anatomic site of application and frequency of application. Arch Dermatol Res 267:229–35
  • Wilhelm KP, Zhai H, Maibach HI. 2012. Dermatotoxicology. New York: CRC Press
  • Willey JD. 1982. Amorphous silica. Kirk-Othmer Encyclopedia of Chemical Technology, vol. 20. New York: John Wiley & Sons, 766–81
  • Xia Y, Gates B, Yin Y, Lu Y. 2000. Monodispersed colloidal spheres: old materials with new applications. Colloidal spheres. Adv Mater 12:693–713
  • Yu T, Greish K, McGill LD, Ray A, Ghandehari H. 2012. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano 6:2289–301
  • Yu T, Malugin A, Ghandehari H. 2011. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–28
  • Yu KO, Grabinski CM, Schrand AM, Murdock RC, Wang W, Gu B, et al. 2009. Toxicity of amorphous silica nanoparticles in mouse keratinocytes. J Nanopart Res 11:15–24
  • Zhang JH, Zhan P, Wang ZL, Zhang WY, Ming NB. 2003. Preparation of monodisperse silica particles with controllable size and shape. J Mater Res 18:649–53
  • Zhang YY, Hu L, Yu DH, Gao CY. 2010. Influence of silica particle internalization on adhesion and migration of human dermal fibroblasts. Biomaterials 31:8465–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.